Dissipation Mechanisms Studied by Dynamic Force Microscopies

  • E. Meyer
  • R. Bennewitz
  • O. Pfeiffer
  • V. Barwich
  • M. Guggisberg
  • S. Schär
  • M. Bammerlin
  • Ch. Loppacher
  • U. Gysin
  • Ch. Wattinger
  • A. Baratoff
Chapter
Part of the NATO Science Series book series (NAII, volume 10)

Abstract

The dissipation mechanisms of contact force microscopy on solid surfaces are related to the fast motion during the slip process. Different degrees of freedom can be excited, such as phonons or electronic excitations. The dissipation mechanisms of dynamic force microscopy (DFM) were recently investigated due to the improvement in large amplitude DFM, also called dissipation force microscopy. Experimental methods to determine damping with DFM will be discussed. When an electrical field is applied between probing tip and sample, damping is observed, which depends on voltage. This type of damping is related to mirror charges, which move in the sample and/or tip because of the motion of the cantilever. When the contact potential is compensated, this long-range part is minimized. Under these conditions, only short-range damping can be measured, which appears at distances of about lnm and increases exponentially with closer separation. Recent models of this type of damping show, that there might be a relationship to the local phonon density.

Keywords

Quartz Chromium Manifold GaAs Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, T.R., Grütter, P., Home, D., and Rugar, D. (1991) “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity” J. Appl Phys. 69, 668–674.CrossRefGoogle Scholar
  2. Bammerlin, M. et al. (1998) “True Atomic Resolution on the Surface of an Insulator via Ultrahigh Vacuum Dynamic Force Microscopy”, Probe Microscopy 1, 3–7.Google Scholar
  3. Barwich, V., Bammerlin, M., Bennewitz, R., Guggisberg, M., Loppacher, C., Pfeiffer, O., Meyer, E., Güntherodt, H.-J., Salvetat, J.P., Bonard, J.M., and Forro, L. (2000)“Carbon nanotubes as tips in non-contact SFM”, Appl. Surf. Sci. 157, 269–273.CrossRefGoogle Scholar
  4. Cleveland, J., Anczykowski, B., Schmid, A., and Elings, V. (1998)“Energy dissipation in tapping-mode atomic force microscopy”, Appl. Phys. Lett. 72, 2613–2615.CrossRefGoogle Scholar
  5. Denk, W., and Pohl, D.W. (1991)“Local electrical dissipation imaged by scanning force microscopy”, Appl Phys. Lett. 59, 2171–2174.CrossRefGoogle Scholar
  6. Dürig, U. (1999a) “Conservative and Dissipative Interactions in Dynamic Force Microscopy” Surf. Interface Anal. 27, 467–473.CrossRefGoogle Scholar
  7. Dürig, U. (1999b) “Relations between interaction force and frequency shift in larg-amplitude dynamic force microscopy” Appl. Phys. Lett. 75, 433–435.CrossRefGoogle Scholar
  8. Dürig, U. (2000a)“Extracting interaction forces and complementary observables in dynamic probe microscopy” Appl. Phys. Lett. 76, 1203–1205.CrossRefGoogle Scholar
  9. Dürig, U. (2000b)“Interaction sensing in dynamic force microscopy”, New Journal of Physics 2, 5.1–5.12.Google Scholar
  10. Erlandsson, R., Olsson, L., and Martensson, P. (1996) “Inequivalent atoms and imaging mechanisms in ac-mode atomic-force microscopy of Si(111)7×7”, Phys. Rev. B 54, R8309–R8312.CrossRefGoogle Scholar
  11. Gauthier, M., and Tsukada, M. (1999)“Theory of noncontact dissipation force microscopy”, Phys. Rev. B 60, 11716–11722.CrossRefGoogle Scholar
  12. Gauthier, M., et al. (2000) 3rd Workshop of Non-contact AFM, Hamburg, to appear in Appl. Phys. A.Google Scholar
  13. Giessibl, F.J. (1995) “Atomic Resolution of Silicon(111)7×7 by Atomic Force Microscopy Through Repulsive and Attractive Forces”, Science 267, 68–72.CrossRefGoogle Scholar
  14. Giessibl, F.J. (1997)“Forces and frequency shifts in atomic-resolution dynamicforce microscopy”, Phys. Rev. B 56, 16010–16015.CrossRefGoogle Scholar
  15. Gotsmann, B., Seidel, C, Anczykowski, B., and Fuchs, H. (1999)“Conservative and dissipative tip-sample interaction forces probed with dynamic AFM”, Phys. Rev. B 60, 11051–11061.CrossRefGoogle Scholar
  16. Israelachvili, J.N. (1985) Intermolecular and Surface Forces, Academic Press, London.Google Scholar
  17. Grütter, P., Liu, Y., LeBlanc, P. and Dürig, U. (1997)“Magnetic dissipation force microscopy”, Appl. Phys. Lett. 71,5279–5282.CrossRefGoogle Scholar
  18. Loppacher, Ch., Bammerlin, M., Battiston, F.M., Guggisberg, M., Müller, D., Hidber, H.R., Lüthi, R., Meyer, E., Güntherodt, H.-J. (1998)“Fast Digital Electronics for Application in Dynamic Force Microscopy Using High-Q Cantilevers”, Appl. Phys. A 66, 215–220.CrossRefGoogle Scholar
  19. Loppacher, Ch., Bammerlin, M., Guggisberg, M., Battiston, F.M., Bennewitz, R., Rast, S., Baratoff, A., Meyer, E., Güntherodt, H.-J. (1999)“Phase Variation Experiments in Non-Contact Dynamic Force Microscopy Using Phase Locked Loop Techniques”, Appl. Surf. Sci. 140, 287–291.CrossRefGoogle Scholar
  20. Loppacher, Ch., Bammerlin, M., Guggisberg, M., Schär, S., Bennewitz, R., Baratoff, A., Meyer, E., Güntherodt, H.-J. (2000a) “Dynamic force microscopy of copper surfaces-Atomic resolution and distance dependence of tip-sample interaction and tunneling current”, submitted to Phys. Rev. B. Google Scholar
  21. Loppacher, C., Bennewitz, R., Pfeiffer, O., Guggisberg, M., Bammerlin, M., Schär, S., Barwich, V., Baratoff, A and Meyer, E. (2000b) “Experimental Aspects of Dissipation Force Microscopy”, to appear in Phys. Rev. B. Google Scholar
  22. Martin, Y., Williams, C.C., and Wickramasinghe, H.K. (1989) “Atomic force microscope-force mapping and profiling on a sub 100-Å scale”, J. Appl. Phys. 61, 4723.CrossRefGoogle Scholar
  23. McClelland, G.M., Erlandsson, R., and Chiang, S. (1987) in Review of Progress in Quantitative Non-Destructrive Evaluation, edited byD.O. Thompson and D. E. Chimenti (Plenum, New York), Vol. 6B, p. 1307–1312.Google Scholar
  24. Nonnenmacher, M., Greschner, J., Wolter, O., and Kassing, R. (1991)“Scannning force microscopy with micromachined silicon devices”, J. Vac. Sci. Technol. B 9 1358–1362.CrossRefGoogle Scholar
  25. Pfeiffer, O., Loppacher, C, Wattinger, C, Bammerlin, M., Gysin, U., Guggisberg, M., Rast, S., Bennewitz, R., Meyer, E., and Güntherodt, H.-J. (2000)“Using higher flexural modes in non-contact force microscopy”, Appl. Surf. Sci. 157, 337–342.CrossRefGoogle Scholar
  26. Sasaki, N. et al. (2000), 3rd Workshop of Non-contact AFM, Hamburg, to appear in Appl. Phys. A.Google Scholar
  27. Sugawara, Y., Ohta, M., Ueyama, H. and Morita, S. (1995)“Defect motion on an InP(llO) surface observed with non-contact force microscopy” Science 270, 1646.CrossRefGoogle Scholar
  28. Stowe, T., Kenny, T., Thomson, D., Rugar, D. (1999)“Silicon dopant imaging by dissipation force microscopy” Appl. Phys. Lett. 75, 2785.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • E. Meyer
    • 1
  • R. Bennewitz
    • 1
  • O. Pfeiffer
    • 1
  • V. Barwich
    • 1
  • M. Guggisberg
    • 1
  • S. Schär
    • 1
  • M. Bammerlin
    • 1
  • Ch. Loppacher
    • 1
  • U. Gysin
    • 1
  • Ch. Wattinger
    • 1
  • A. Baratoff
    • 1
  1. 1.Institut für PhysikUniversität BaselBaselSwitzerland

Personalised recommendations