Skip to main content

Nanoscale Lubrication and Friction Control

  • Chapter
  • 1524 Accesses

Part of the book series: NATO Science Series ((NAII,volume 10))

Abstract

Knowledge pertaining to the molecular-scale origins of structure, dynamics, response characteristics and rheology of highly confined liquids, and of their dependencies on molecular size, shape and complexity, is of importance for the molecular design of lubricants in nanoscale junctions. In this article we review recent progress toward understanding the nature of such systems, obtained through comparative grand-canonical molecular dynamics simulations for confined liquids made of molecules of different shapes (globular versus alkane chains), sizes (short versus longer chains, i.e., hexadecane and tetracosane) and complexity (straight alkanes and a branched one, squalane). Energetic and entropic contributions to the solvation forces for these systems are discussed. Subsequently, we describe a novel method for controlling friction through small-amplitude (∼1Å) oscillations of the confining boundaries in the direction perpendicular to the shear plane. The results of the simulations are analyzed via a generalized rate-and-state model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhushan, B., Ed. (1995), Handbook of Micro/Nano Tribology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bhushan, B., Ed. (1997), Micro/Nanotribology and its Applications, Kluwer, Dordrecht.

    Google Scholar 

  • Bhushan, B., Israelachvili, J. N., and Landman U. (1995), “Nanotribology: Friction, Wear, And Lubrication At The Nanoscale”, Nature 374, 607–616.

    Article  CAS  Google Scholar 

  • Bowden, F. P. and Tabor, D. (1939), “The Area of Contact Between Stationary and Between Moving Surfaces”, Proc. Roy. Soc. A169, 391.

    Google Scholar 

  • Bowden, F.P. and Tabor, D. (1973), Friction: An Introduction to Tribology, Anchor Press/Doubleday, Garden City, N. Y..

    Google Scholar 

  • Carlson, J. M., Batista, H. F. (1996), “Constitutive Relation for the Friction Between Lubricated Surfaces”, Phys. Rev. E 53, 4153–4165.

    Article  CAS  Google Scholar 

  • Carpick, R. W. and Salmeron, M. (1997), “Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy”, Chem. Rev. 97, 1163–1194.

    Article  CAS  Google Scholar 

  • Chan, D. Y. C., Horn, R. G. (1985), “The Drainage of Thin Liquid Films Between Solid Surfaces”, J. Chem. Phys. 83, 5311–5324.

    Article  CAS  Google Scholar 

  • Desaguliers, J. T. (1734), A Course of Experimental Philosophy, 2 Vols., London, Vol.1, with thirty two copper plates.

    Google Scholar 

  • Dinelli, F., Biswas, S. K., Briggs, G. A., Koslov, O. V. (1997), “Ultrasound Induced Lubricity in Microscopic Contact”, Appl. Phys. Lett, 71, 1177–1179.

    Article  CAS  Google Scholar 

  • Dowson, D., Higginson, G. R. (1977), Elastohydrodynamic Lubrication, Pregamon, London.

    Google Scholar 

  • Dowson, D. (1979), History of Tribology, Longman, New York.

    Google Scholar 

  • Dowson, D. (1992), “Friction and Traction in Lubricated Contacts” in Fundamentals of Friction: Macroscopic and Microscopic Processes (Singer, I. L., and Pollock, H. M., Eds.), pp. 325–349, Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Gao, J., Luedtke, W. D., and Landman, U. (1995), “Nano-Elastohydrodynamics-Structure, Dynamics, and Flow in Nonuniform Lubricated Junctions”, Science 270, 605–608.

    Article  CAS  Google Scholar 

  • Gao, J., Luedtke, W. D., and Landman, U. (1997a), “Origins of Solvation Forces in Confined Films”, J. Phys. Chem. B, 101, 4013–4023

    Article  CAS  Google Scholar 

  • Gao, J., Luedtke, W. D., and Landman, U. (1997b), “Structure and Solvation Forces in Confined Films: Linear and Branched Alkanes”, J. Chem. Phys. B, 106, 4309–4318.

    Article  CAS  Google Scholar 

  • Gao, J., Luedtke, W. D., and Landman, U. (1997c), “Layering Transitions and Dynamics of Confined Liquid Films”, Phys. Rev. Lett., 79, 705–708.

    Article  CAS  Google Scholar 

  • Gao, J., Luedtke, W. D., and Landman, U. (1998), “Friction Control in Thin-Film Lubrication”, J. Phys. Chem. B 102, 5033–5037.

    Article  CAS  Google Scholar 

  • Gohar, R. (1988), Elastohydrodynamic, Horwood, Chichester.

    Google Scholar 

  • Granick, S. (1991), “Motions and Relaxations of Confined Liquids”, Science 253, 1374–1379.

    Article  CAS  Google Scholar 

  • Granick, S., Demirel, A. L., Cai, L., and Peanasky, J. (1995), “Soft Matter in a Tight Spot-Nanorheology of Confined Liquids and Block-Copolymers”, Isr. J. Chem. 35, 75–84.

    Google Scholar 

  • Hertz, H. (1882), “On the Contact of Elastic Solids”, J. Reine und angew. Math., 92, 156–171. (For English translation see Miscellaneous Papers by H Hertz, Jones and Schott, eds., Macmillan, London, 1896.)

    Google Scholar 

  • Heuberger, M., Drummond, C, Israelachvili, J. N. (1998), “Coupling of Normal and Transverse Motions During Frictional Sliding”, J. Phys. Chem. B 102, 5038–5041.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N. (1986), “Measurement of the Viscosity of Liquids in Very Thin Films”, Colloid Interface Sci. 110, 263–271.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N. (1992), Intermodular and Surface Forces, 2nd Ed., Academic Press, New York.

    Google Scholar 

  • Israelachvili, J. N., McGuiggan, P. M., and Homola, A. M. (1988), “Dynamic Properties of Molecularly Thin Liquid-Films”, Science 240, 189–191.

    Article  CAS  Google Scholar 

  • Johnson, K. L. (1982), “One Hundred Years of Hertz Contact”, Proc. Instn. Mech. Engrs. 196, 363–378.

    Article  Google Scholar 

  • Klein, J., and Kumacheva, E. (1995), “Confinement-Induced Phase-Transitions in Simple Liquids”, Science 269, 816–819.

    Article  CAS  Google Scholar 

  • Krim, J. (1996), “Friction at the Atomic Scale”, Scientific Am. 275, 74–80.

    Article  CAS  Google Scholar 

  • Kumacheva, E., and Klein, J. (1998), “Simple Liquids Confined to Molecularly Thin Layers. II. Shear and Frictional Behavior of Solidified Films”, J. Chem. Phys. 108, 7010–7022.

    Article  CAS  Google Scholar 

  • Landman, U., Luedtke, W. D., Burnham, N., and Colton, R. J. (1990), “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science 248, 454–461.

    Article  CAS  Google Scholar 

  • Landman, U. (1998), “On Nanotribological Interactions: Hard and Soft Interfacial Junctions”, Solid State Commun., 107, 693–708.

    Article  CAS  Google Scholar 

  • Leslie, J. (1804), An Experimental Inquiry Into the Nature and Propagation of Heat, printed for Newman, J., No.22, Poultry, England.

    Google Scholar 

  • Persson, B. N. J, and Tosatti E., Eds. (1996), Physics of Sliding Friction, Kluwer, Dordrecht.

    Google Scholar 

  • Persson, B.N. J. (1998), Sliding Friction, Springer, Berlin.

    Book  Google Scholar 

  • Polycarpou, A. A., and Soom, A. (1995), “Boundary and Mixed Friction in the Presence of Dynamic Normal Loads.1. System Model”, J. Tribol. 117, 255–260.

    Article  Google Scholar 

  • Reiner, M (1964), “The Deborah Number”, Physics Today January, 62.

    Google Scholar 

  • Reiter, G., Demirel, A. L., and Granick, S. (1994), “From Static to Kinetic Friction in Confined Liquid-Films”, Science 263, 1741–1744.

    Article  CAS  Google Scholar 

  • Rice, J. R., Ruina, A. L. (1983), “Stability of Steady Frictional Slipping”, J. Appl Mech. 50, 343–349.

    Article  Google Scholar 

  • Ruina, A. L., (1983), “Slip Instability and State Variable Friction Laws”, J. Geophys. Res. 88, 10359–10370.

    Article  Google Scholar 

  • Serena, P. A. and Garcia, N., Eds. (1997), Nanowires, Kluwer, Dordrecht.

    Google Scholar 

  • Singer, I. L., and Pollock, H. M., Eds. (1992), Fundamentals of Friction: Macroscopic and Microscopic Processes, Kluwer, Dordrecht.

    Google Scholar 

  • Thompson, P. A., and Robbins, M. O. (1990), “Origin of Stick-Slip Motion in Boundary Lubrication”, Science 250, 792–794.

    Article  CAS  Google Scholar 

  • Van Alster, J., and Granick, S. (1988), “Molecular Tribometry of Ultrathin Liquid-Films”, Phys. Rev. Lett. 61, 2570–2573.

    Article  Google Scholar 

  • Yoshizawa, H., Chen, Y.-L., and Israelachvili, J. N (1993), “Recent Advances in Molecular-Level Understanding of Adhesion, Friction and Lubrication”, Wear 168, 161–166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, J., Luedtke, W.D., Landman, U. (2001). Nanoscale Lubrication and Friction Control. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics