Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 10))

Abstract

Atomic-scale stick-slip is one of the fundamental friction processes. It has been observed on layered materials, such as graphite, or ionic crystals, such as NaCl(001). Recently, wearless friction was also observed on clean metallic surfaces, such as Cu(111).

The friction force vs. lateral position traces show stick slip with the periodicity of the atomic lattice. The probing tip sticks at certain positions, builts up elastic deformation until a threshold value is reached. Then the tip jumps one unit cell to the next sticking site. Friction force loops show that the energy which is released during one slip is typically leV.

The velocity dependence of atomic-scale stick-slip was investigated. A logarithmic dependence of friction as a function of velocity is found. The results are discussed in terms of a Tomlinson model, which takes into account thermal activation. At low velocities, the tip may slip at lower lateral forces because of thermal activation. At higher velocities the probability is lower to overcome the barrier by thermal activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Overney, and E. Meyer (1993) MRS Bulletin, 18, 26–35.

    CAS  Google Scholar 

  • I.L. Singer (1993) in Dissipative Process in Tribology, Edts. Dowson, D., Taylor, CM., Childs, T.H.C., Gopdet, M. and Dalmaz, G., Proceedings of the 20th LeedLyon Symposium on Tribology, Villeurbanne, 7-10 Sept.

    Google Scholar 

  • E. Meyer, R. Overney, and J. Frommer (1994) in Handbook of Micro/Nanotribology, Edt. B. Bhushan, CRC Press Inc.

    Google Scholar 

  • O. Marti (1993) Nanotribology: Friction on a Nanometer Scale, Physica Scripta T49, 599–604.

    Article  Google Scholar 

  • E. Meyer, R. Lüthi, L. Howald and H.-J. Güntherodt (1995) p. 285 in Forces in Scanning Probe Methods, Eds. H.-J. Giintherodt, D. Anselmetti and E. Meyer, NATO ASI Series E: Applied Sciences Vol. 286, Kluwer Academic publishers.

    Google Scholar 

  • J. Krim (1995) Comments Condens. Mater. Phys., 17 263–270.

    CAS  Google Scholar 

  • B. Bhushan, J.N. Israelachvili and U. Landman (1995) Nature 374, 607–610.

    Article  CAS  Google Scholar 

  • C.M. Mate (1995) Force microscopy studies of the molecular origins of friction and lubrication, IBM Journal of Research and Development, 39, 617–627.

    Article  CAS  Google Scholar 

  • R.W. Carpick and M. Salmeron (1997) Scratching the Surface: Fundamental Investigations of Tribology with Atomic Force Microscopy, Chemical Reviews 97, 1163–1194.

    Article  CAS  Google Scholar 

  • E. Meyer, R.M. Overney, K. Dransfeld, and T. Gyalog (1998) Nanoscience: Friction and Rheology on the Nanometer Scale World Scientific Publishing, Singapore.

    Book  Google Scholar 

  • T. Bouhacina, J.P. Aime, S. Gauthier, D. Michel, and V. Heroguez (1997) Phys. Rev. B 56, 7694–7700.

    CAS  Google Scholar 

  • F.P. Bowden and D. Tabor (1967) Friction and Lubrication, London, Methuen, revised edition.

    Google Scholar 

  • B. Briscoe and D.C.B. Evans (1982) The shear properties of Langmuir-Blodgett layers, Proc. R. Soc. London A 380, 389–407.

    Article  CAS  Google Scholar 

  • B.J. Briscoe and A.C. Smith, The interfacial shear strength of molybdenum disulfide and graphite films, ASLE Transactions 25, 349–354.

    Google Scholar 

  • R.W. Carpick, N. Agrait, D.F. Ogletree adn M. Salmerón (1996) Measurement of interfacial shear (friction) with an ultrahigh vacumm force microscope, J. Vac. Sci. Technol. B 14, 1289–1295.

    Article  CAS  Google Scholar 

  • R.W. Carpick, D.F. Ogletree and M. Salmerón (1997) Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550.

    Article  CAS  Google Scholar 

  • J. Colchero, M. Luna and A.M. Baro (1996a) Lock-in technique for measuring friction on a nanometer scale, Appl. Phys. Lett., 68, 2896–2898.

    Article  CAS  Google Scholar 

  • J. Colchero, M. Luna and A.M. Baro (1996b) Energy dissipation in scanning force microscopy-friction on an atomic scale, Tribology Letters, 2, 327–343.

    Article  CAS  Google Scholar 

  • A. Fogden and L.R. White (1990) J. Colloid Interface Sci. 138, 414–418.

    Article  CAS  Google Scholar 

  • E. Gnecco R. Bennewitz T. Gyalog Ch. Loppacher M. Bammerlin E. Meyer and H.-J. Güntherodt 2000 Phys. Rev. Lett. 84 1172–1174

    Article  CAS  Google Scholar 

  • K.L. Johnson (1985) Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom.

    Book  Google Scholar 

  • M.A. Lantz, S.J. O’Shea, A.C.F. Hoole and M.E. Weiland (1997a) Lateral stiffness of the tip and tip-sample contact in frictional force microscopy, Appl. Phys. Lett., 70, 970–972.

    Article  CAS  Google Scholar 

  • Lantz et al. (1997b) found for a silicon tip: cn=l.lN/m;cx =110N/m; ktip=84N/m and for a Si3N4-tip: cn=0.6N/m; cx=8.2N/m; ktip =39N/m [Data from Lantz (1997a)]

    Google Scholar 

  • M.A. Lantz, S.J. O’Shea, M.E. Welland and K.L. Johnson (1997c) Atomic force microscope study of contact area and friction on NbSe2, Phys. Rev. B, 55, 10776–10780.

    Article  CAS  Google Scholar 

  • R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, M. Guggisberg, M. Bammerlin and H.-J. Güntherodt (1995) Surf. Sci. 338, 247–251.

    Article  Google Scholar 

  • R. Lüthi, E. Meyer, M. Bammerlin, L. Howald, H. Haefke, T. Lehmann, C. Loppacher, H.-J. Güntherodt, T. Gyalog and H. Thomas (1996) Friction on the atomic scale: An ultrahigh vacuum atomic force microscopy study on ionic crystals, J. Vac. Sci. Technol B 14, 1280–1284.

    Article  Google Scholar 

  • C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang (1987) Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface, Phys. Rev. Lett. 59, 1942–1945.

    Article  Google Scholar 

  • E. Meyer, L. Howald, R. Overney, D. Brodbeck, R. Lüthi, H. Haefke, J. Frommer and H.-J. Güntherodt (1992) Ultramicroscopy 42-44, 274–278.

    Article  CAS  Google Scholar 

  • E. Meyer et al. (1996) in Physics of Sliding Friction, edited by B.N.J. Persson and E. Tosatti, Series E: Applied Sciences, Vol. 311, Kluwer Academic Publishers, 349–356.

    Google Scholar 

  • J.B. Pethica (1986) Comment on Interatomic Forces in Scanning Tuneling Microscopy: Giant Corrugations of the Graphite Surface, Phys. Rev. Lett. 57,3235.

    Article  CAS  Google Scholar 

  • C.A.J. Putmann, M. Igarshi and R. Kaneko (1995) Single-asperity friction in friction force microscopy: The composite-tip model, Appl. Phys. Lett. 66, 3221–3223.

    Article  Google Scholar 

  • E. Rabinowicz (1965) Friction and Wear of Materials, John Wiley&Sons.

    Google Scholar 

  • U.D. Schwarz, W. Allers, G. Gensterbium and R. Wiesendanger (1995) Low-load friction behaviour of epitaxial C60 monolayers under Hertzian contact, Phys. Rev. B 52, 14976–14984.

    Article  CAS  Google Scholar 

  • O. Zwörner, H. Hölscher, U.D. Schwarz, and R. Wiesendanger (1998) Appl. Phys. Lett. 66, S263–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bennewitz, R., Meyer, E., Bammerlin, M., Gyalog, T., Gnecco, E. (2001). Atomic-Scale Stick Slip. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics