Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 10))

Abstract

A thorough understanding of friction mechanisms is needed for the successful development of future microelectromechanical systems (MEMS). Standard macro as well as advanced micro/nano friction experiments are reviewed, which address anisotropic friction characteristics of crystalline materials such as polycrystalline silicon (polysilicon) used for MEMS devices. Theoretical studies that predict these characteristics using the fundamentals of mechanics, thermodynamics, and associated molecular dynamics simulations are also reviewed. Results are discussed in light of our current understanding of fundamental friction mechanisms developed from both a macrotribological standpoint as well as a micro/nanotribological standpoint. The important roles of crystal orientation and grain boundaries in determining the magnitude of friction are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berman, A. and Israelachvili, J. (1997), “Control and Minimization of Friction via Surface Modification,” in Dordrecht, The Netherlands.

    Google Scholar 

  • Bhushan, B. (1997), “Friction, Scratching/Wear, Indentation and Lubrication on Micro-to Nanoscales,” in Micro/Nanotribology and its Applications (B. Bhushan,ed.), pp. 169–191,NATO-ASIE330, KluwerAcad.Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Bhushan, B., ed. (1998), Tribology Issues and Opportunities in MEMS, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • Bhushan, B. (1999a), Handbook of Micro/Nanotribology, 2nd ed, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bhushan, B. (1999b), Principles and Applications of Tribology, Wiley, New York.

    Google Scholar 

  • Bhushan, B. and Gupta, B. K. (in press), “Macro-and Micromechanical and Tribological Properties,” in Hard Coatings for Wear Reduction, Corrosion/Erosion Protection, and Biomaterials (R. F. Bunshah, ed.), Noyes Publications, Park Ridge, NJ.

    Google Scholar 

  • Bhushan, B., Israelachvili, J. N. and Landman, U. (1995), “Nanotribology: Friction, Wear and Lubrication at the Atomic Scale,” Nature 374, 607–616.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Koinkar, V. N. (1994), “Tribological Studies of Silicon for Magnetic Recording Applications,” J. Appl. Phys. 75, 5741–5746.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Li, X. (1997), “Micromechanical and Tribological Characterization of Doped Single-crystal Silicon and Polysilicon Films for Microelectromechanical Systems,” J. Mater. Res. 12, 54–63.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Venkatesan, S. (1993a), “Mechanical and Tribological Properties of Silicon for Micromechanical Applications: a Review,” Adv. Info. Storage Syst. 5, 211–239.

    Google Scholar 

  • Bhushan, B. and Venkatesan, S. (1993b), “Friction and Wear Studies of Silicon in Sliding Contact with Thin-film Magnetic Rigid Disks,” J. Mater. Res. 8, 1611–1628.

    Article  CAS  Google Scholar 

  • Bluhm, H., Schwarz, U. D., Meyer, K. P. and Wiesendanger, R. (1995), “Anisotropy of Sliding Friction on the Triglycine Sulfate (010) Surface,” Appl. Phys. A61, 525–533.

    Google Scholar 

  • Bowden, F. P. and Tabor, D. (1950), The Friction and Lubrication of Solids — Part 1, Clarendon, Oxford, U.K.

    Google Scholar 

  • Buckley, D. H. (1982), “Surface Films and Metallurgy Related to Lubrication and Wear,” Progress in Surface Science (S. G. Davison, ed.), pp. 1–154, Permagon, NY.

    Google Scholar 

  • Burnham, N. A. and Kulik, A. J. (1999), “Surface Forces and Adhesion,” in Handbook of Micro/Nanotribology, 2nd ed. (B. Bhushan, ed.), pp. 247–271, CRC Press, Boca Raton, Florida

    Google Scholar 

  • Colchero, J., Meyer, E. and Marti, O. (1999), “Friction on an Atomic Scale,” in Handbook of Micro/Nanotribology, 2nd ed. (B. Bhushan, ed.), pp. 273–333, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Czajka, R., Mróz, B., Szuba, S. and Mielcarek, S. (1997), “Investigation of Sliding Friction on the Ferroic Crystals Surface,” in Micro/Nanotribology and its Applications (B. Bhushan, ed.), pp. 269–273, NATO-ASIE330, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Czichos, H. (1978), Tribology Series, 1, Tribology a Systems Approach to the Science and Technology of Friction, Lubrication, and Wear, Elsevier, NY.

    Google Scholar 

  • Fujisawa, S., Sugaware, Y., Ito, S., Mishima, S., Okada, T. and Morita, S. (1993), “The Two-dimensional Stick-Slip Phenomenon with Atomic Resolution,” Nanotechnology, 4, 138–142.

    Article  Google Scholar 

  • Garcia, R., Tamayo, J., Gonzalez, L. and Gonzalez, Y. (1997), “Compositional Characterization of III-V Semiconductor Heterostructures by Friction Force Microscopy,” in Micro/Nanotribology and its Applications (B. Bhushan, ed.), pp. 275–282, NATO-ASIE330, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Gardos, M. N. (1998), “Advantages and Limitations of Silicon as a Bearing Material for Mems Applications,” in Tribology Issues and Opportunities in MEMS (B. Bhushan, ed.), pp. 341–365, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Grillo, S. E., Field, J. E. and van Bouwelen, F. M. (2000), “Diamond Polishing: the Dependency of Friction and Wear on Load and Crystal Orientation,” J Phys. D: Appl. Phys. 33, 985–990.

    Article  CAS  Google Scholar 

  • Gupta, B. K., Bhushan, B. and Chevallier, J. (1994), “Modification of Tribological Properties of Silicon by Boron Ion Implanation,” Tribol. Trans. 37, 601–607.

    Article  CAS  Google Scholar 

  • Gupta, B. K., Chevallier, J. and Bhushan, B. (1993), “Tribology of Ion Bombarded Silicon for Micromechanical Applications,” ASME J. Tribol. 115, 392–399.

    Article  CAS  Google Scholar 

  • Hirano, M. and Shinjo, K. (1990), “Atomistic Locking and Friction,” Phys. Rev. B41, 11837–11851

    Google Scholar 

  • Hirano, M., Kazumasa, S., Kaneko, R. and Murata Y. (1991), “Anisotropy of Frictional Forces in Muscovite Mica,” Phys. Rev. Lett. 67, 2642–2645.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N. and Tabor, D. (1972), “The Measurement of Van Der Waals Dispersion Forces in the Range of 1.5 to 130 nm,” Proc. R. Soc. Lond. A331, 19–38.

    Google Scholar 

  • Maboudian, R. (1998), “Adhesion and Friction Issues Associated with Reliable Operation of MEMS,” MRS Bulletin 23, 47–51.

    CAS  Google Scholar 

  • Martin, J. M., Pascal, H., Donnet, C., Mogne Th. L., Loubet, J. L. and Epicier, Th. (1994), “Superlubricity of MoS2: Crystal Orientation Mechanisms,” Surf. and Coat. Tech. 68/69, 427–432.

    Article  CAS  Google Scholar 

  • Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S. (1987), “Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface,” Phys. Rev. Lett. 59, 1942–1945.

    Article  CAS  Google Scholar 

  • Morita, S., Fujisawa, S. and Yasuhiro, S. (1996), “Spatially Quantized Friction with a Lattice Periodicity,” Surf. Sci. Rep. 23, 1–41.

    Article  CAS  Google Scholar 

  • Ohmae, N. (1997), “Adhesion and Friction Using Field Ion Microscopy,” in Micro/Nanotribology and its Applications (B. Bhushan, ed.), pp. 135–150, NATO-ASI E330, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Rajasekaran, E., Zeng, X. C. and Diestler, D. J. (1997), “Frictional Anisotropy and the Role of Lattice Relaxation in Molecular Tribology of Crystalline Interfaces,” in Micro/Nanotribology and its Applications (B. Bhushan, ed.), pp. 371–377, NATO-ASI E330, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Schimizu, J., Eda, H., Yoritsune, M. and Etsuji, O. (1998), “Molecular Dynamics Simulation of Friction on the Atomic Scale,” Nanotechnology 9, 118–123.

    Article  Google Scholar 

  • Schmitt, M., Paulmier, D. and Huu, T. L. (1999), “Influence of Diamond Crystal Orientation on Their Tribological Behavior under Various Environments,” Thin Solid Films 343-344, 226–229.

    Article  CAS  Google Scholar 

  • Shackelford, J. F. (1996), Introduction to Materials Science for Engineers, 4th ed., Prentice Hall, New Jersey.

    Google Scholar 

  • Sheehan, P. E. and Lieber, C. M. (1996), “Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy,” Science 272, 1158–1161.

    Article  CAS  Google Scholar 

  • Sundararajan, S. and Bhushan, B. (1998), “Micro/Nanotribological Studies of Polysilicon and SiC Films for MEMS Applications,” Wear 217, 251–261.

    Article  CAS  Google Scholar 

  • Tabor, D. and Winterton, R. H. S. (1969), “The Direct Measurement of Normal and Retarded Van Der Waals Forces,” Proc. R. Soc. Lond. A312, 435–450.

    Google Scholar 

  • Tas, N., Vogelzang, B., Elwenspoek, M. and Legtenberg, R. (1997), “Adhesion and Friction in MEMS,” in Micro/Nanotribology and its Applications (B. Bhushan, ed.), pp. 621–628, NATO-ASI E330, Kluwer Acad. Publ., Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Tomlinson, G. A. (1929), “A Molecular Theory of Friction,” Philo. Mag, 7, 905–939.

    CAS  Google Scholar 

  • Venkatesan, S. and Bhushan, B. (1993), “The Role of Environment in the Friction and Wear of Single-crystal Silicon in Sliding Contact with Thin-film Magnetic Rigid Disks,” Adv. Info. Storage Syst., 5, 241–257.

    Google Scholar 

  • Venkatesan, S. and Bhushan, B. (1994), “The Sliding Friction and Wear Behavior of Single-crystal Polycrystalline and Oxidized Silicon,” Wear 171, 25–32.

    Article  CAS  Google Scholar 

  • Weick, B. and Bhushan, B. (2000), “Grain Boundary and Crystallographic Orientation Effects on Friction,” Tribol. Trans. 43, 33–38.

    Article  CAS  Google Scholar 

  • Yoshizawa, H., Chen, Y. L. and Israelachvili, J. (1993), “Fundamental Mechanisms of Interfacial Friction. 1. Relation Between Adhesion and Friction,” J. Phys. Chem. 97, 4128–4140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weick, B.L., Bhushan, B. (2001). The Anisotropic Friction Characteristics of Crystalline Materials: A Review. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics