Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 10))

  • 1518 Accesses

Abstract

We propose a theoretical description of frictional phenomena in nanoscale layers of electrolyte solutions embedded between two plates, one of which is externally driven. It is shown that a presence of nonuniform charge distributions on the plates leads to a space-dependent frictional force, which enters into the equation of motion for the top driven plate. The equation displays a rich spectrum of dynamical behaviors: periodic stick-slip, erratic and intermittent motions, characterized by force fluctuations, and sliding above the critical velocity. Boundary lines separating different regimes of motion in a dynamical phase diagram are determined. The dependencies of the frictional force and regimes of motion on an electrolyte concentration, surface charge distribution and a thickness of the liquid layer are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumberger T., Caroli C, Perrin B. and Ronsin O. (1995), “Nonlinear Analysis of the Stick-Slip Bifurcation in the Creep-Controlled Regime of Dry Friction”, Phys. Rev. E 51, 4005–4010.

    Article  CAS  Google Scholar 

  • Baumberger T. and Caroli C. (1998), “A Phenomenology of Boundary Lubrication: the Lumped Junction Model”, Eur.Phys.J. B 4, 13–23.

    Article  CAS  Google Scholar 

  • Berman A.D., Ducker W.A. and Israelachvili J. (1996), “Origin and Characterization of Different Stick-Slip Friction Mechanisms”, Langmuir 12, 4559–4563.

    Article  CAS  Google Scholar 

  • Bhushan B., Israelachvili J. and Landman U. (1995), “Nanotribology-Friction, Wear and Lubrication at the Atomic Scale”, Nature 374, 607–616.

    Article  CAS  Google Scholar 

  • Bhushan B. (ed) (1997), Micro/Nanotribology and Its Application, Vol. 330 of NATO Advanced Study Institute, Series E: Applied Sciences, Kluver Academic, Dordrecht.

    Google Scholar 

  • Bordarier P., Schoen M. and Fuchs A.H. (1998),”,Stick-Slip Phase Transitions in Confined Solidlike Films from an Equilibrium Perspective”, Phys. Rev.E 57, 1621–1635.

    Article  CAS  Google Scholar 

  • Braiman Y., Family F. and Hentschel (1996), “Nonlinear Friction in the Periodic Stick-Slip Motion of Coupled Oscillators”, Phys. Rev. B 55, 5491–5504.

    Article  Google Scholar 

  • Braun O., Dauxois T. and Peyrard M.(1997), “Friction in a Thin Commensurate Contact”, Phys. Rev. B 56, 4987–4995.

    Article  CAS  Google Scholar 

  • Carlson J.M. and Batista A.A. (1996), “Constitutive Relation for the Friction between Lubricated Surfaces”, Phys. Rev. E 53, 4153–4165.

    Article  CAS  Google Scholar 

  • Crassous J., Charlaix E. and Loubet J.L. (1997), “Nanoscale Investigation of Wetting Dynamics with a Surface Force Apparatus”, Phys. Rev. Lett. 78, 2425–2428.

    Article  CAS  Google Scholar 

  • Daikhin L.I. and Urbakh M. (1999), “Frictional Forces in an Electrolytic Environment”, Phys. Rev. E 59, 1921–1931.

    Article  CAS  Google Scholar 

  • Delahey P. (1966), Double Layer and Electrode Kinetics, Wiley, New York.

    Google Scholar 

  • Demirel AX. and Granick S. (1996), “Friction Fluctuation and Friction Memory in Stick-Slip Motion”, Phys. Rev. Lett. 77, 4330–4333.

    Article  Google Scholar 

  • Dhinojwala A. and Granick S. (1997), “Relaxation Time of Confined Aqueous Films under Shear”, J. Am. Chem. Soc. 119, 241–242.

    Article  CAS  Google Scholar 

  • Elmer F.J. (1997), “Nonlinear Dynamics of Dry Friction”, J. Phys. A 30, 6057–6063.

    Article  Google Scholar 

  • Gao J.P., Luedtke W.D. and Landman U. (1995), “Nano-Elastohydrodynamics — Structure, Dynamics and Flow in Nonuniform Lubricated Junctions”, Science 270, 605–608.

    Article  CAS  Google Scholar 

  • Georges J.M., Tonck A. and Loubet J.L. (1996), “Rheology and Friction of Compressed Polymer Layers Adsorbed on Solid Surfaces”, J. Phys. II 6, 57–76.

    Article  CAS  Google Scholar 

  • Helman J.S., Baltensperger W. and Holyst J.A. (1994), “Simple Model of Dry Friction”, Phys. Rev. B 49, 3831–3838.

    Article  Google Scholar 

  • Hu H.W., Carson G.A. and Granick S. (1991), “Relaxation Time of Confined Liquids under Shear”, Phys. Rev. Lett. 66, 2758–2761.

    Article  CAS  Google Scholar 

  • Israelachvili J. (1991), Intermolecular and Surface Forces, 2nd ed., Academic, London.

    Google Scholar 

  • Klein J. and Kumacheva E. (1995), “Interfacial Shear of Polymeric Surface Phases”, Science 269, 816–819.

    Article  CAS  Google Scholar 

  • Klein J. and Kumacheva E. (1998), “Simple Liquids Confined to molecularly thin layers. I. Confinement induced liquid to solid phase transitions”, J. Chem. Phys. 108, 6996–7009.

    Article  CAS  Google Scholar 

  • Kumacheva E. and Klein J. (1998), “Simple Liquids Confined to Molecularly Thin Layers. II. Shear and Frictional Behavior of Solidified Films”, J. Chem. Phys. 108, 7010–7022.

    Article  CAS  Google Scholar 

  • Landman U., Luedtke W.D. and Gao J.P. (1996), “Atomic-Scale Issues in Tribology: Interfacial Junctions and Nano-Elastohydrodynamics”, Langmuir 12, 4514–4528.

    Article  CAS  Google Scholar 

  • Nasuno S., Kudrolli A. and Gollub J. (1997), “Friction in Granular Layers. Hysteresis and Precursors”, Phys. Rev. Lett. 79 949–952.

    Article  CAS  Google Scholar 

  • Persson B.N.J. (1998), Sliding Friction. Physical Principles and Applications, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Pincus P.A. and Safran S.A. (1998), “Charge Fluctuations and Membrane Attractions”, Europhys. Lett. 42, 103–108.

    Article  CAS  Google Scholar 

  • Rozman M.G., Urbakh M. and Klafter J. (1996), “Origin of Stick-Slip Motion in a Driven Two-Wave Potential”, Phys. Rev. E 54, 6485–6494.

    Article  CAS  Google Scholar 

  • Rozman M.G., Urbakh M. and Klafter J. (1997), “Stick-Slip Dynamics as a Probe of Frictional Forces”, Europhys. Lett. 39, 183–188.

    Article  CAS  Google Scholar 

  • Roder J., Hammerberg J.E., Holian B.L. and Bishop A.R. (1998), “Multichain Frenkel-Kontorova Model for Interfacial Slip”, Nature 374, 607–616.

    Google Scholar 

  • Safran S.A. (1994), Statistical Thermodynamics of Surfaces, Interfaces and Membranes, Addison-Wesley, reading, MA.

    Google Scholar 

  • Singer I.L. and Pollock H.M. eds. 1992 Fundamentals of Friction 220 of NATO Advanced Study Institute Series E Applied Sciences, Kluwer Academic, Dordrech

    Google Scholar 

  • Sokoloff J.B. (1990), “Theory of Energy-Dissipation in Sliding Crystal Surfaces”, Phys. Rev.B. 42,760–765.

    Article  Google Scholar 

  • Sokoloff J.B. (1995), “Microscopic Mechanisms for Kinetic Friction Nearly Frictionless Sliding for Small Solids”, Phys. Rev. B 52, 7205–7214.

    Article  CAS  Google Scholar 

  • Strunz T. and Elmer F.J. (1998), “Driven Frenkel-Kontorova Model. I. Uniform Sliding and Dynamical Domains of Different Particle Densities”, Phys. Rev. E 58, 1601–1611.

    Article  CAS  Google Scholar 

  • Tompson P.A. and Robbins M.O. (1990), “Origin of Stick-Slip Motion in Boundary Lubrication”, Science 250, 792–794.

    Article  Google Scholar 

  • Tompson P.A., Robbins M.O. and Grest G.S. (1995), “Structure and Shear Response in Nanometer-Thick Films”, Israel J. Chem. 35, 93–106.

    Google Scholar 

  • Urbakh M., Daikhin L. and Klafter J. (1995a), “Dynamics of Confined Liquids under Shear”, Phys. Rev. E 51, 2137–2141.

    Article  CAS  Google Scholar 

  • Urbakh M., Daikhin L. and Klafter J. (1995b), “Velocity Profiles and the Brinkman Equation in Nanoconfined Liquids”, Europhys. Lett. 32, 125–130.

    Article  CAS  Google Scholar 

  • Urbakh M., Daikhin L. and Klafter J. (1995c), “Sheared Liquids in the Nanoscale Range”, J. Chem. Phys. 103, 10707–10713.

    Article  CAS  Google Scholar 

  • Weiss M. and Ebner F.J. (1997), “Dry Friction in the Frenkel-Kontorova Model: Dynamical Properties”, Z. Phys. B 104, 55–69.

    Article  CAS  Google Scholar 

  • Weiland M., Zink B., Shifter T. and Marti O. (1997), “Nanotribology in Electrolytic Environment, in Micro/Nanotribology and Its Applications”, in Vol 330 of NATO Advanced Study Institute, Series E: Applied Sciences, ( B. Bhushan, ed), Kluver Academic, Dordrecht.

    Google Scholar 

  • Wilhelm M. and Klein J. (1997), (private communication).

    Google Scholar 

  • Yoshizawa H., McGuiggan P. and Israelachvili J. (1993a), “Identification of a Second Dynamic State During Stick-Slip Motion”, Science 259, 1305–1308.

    Article  CAS  Google Scholar 

  • Yoshizawa H., Chen Y.L. and Israelachvili J. (1993b), “Fundamental Mechanisms of Interfacial Friction. 1. Relation between Adhesion and Friction”, J. Phys. Chem. 97, 4128–4140.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Daikhin, L., Urbakh, M. (2001). Effect of Electrostatic Interactions on Frictional Forces in Electrolytes. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics