Skip to main content

Abstract

In this paper we develop a simple one-dimensional model accounting for the formation and growth of globally stable finite scale microstructures. We extend Ericksen’s model [9] of an elastic “bar” with nonconvex energy by including both oscillation-inhibiting and oscillation-forcing terms in the energy functional. The surface energy is modeled by a conventional strain gradient term. The main new ingredient in the model is a nonlocal term which is quadratic in strains and has a negative definite kernel. This term can be interpreted as an energy associated with the long-range elastic interaction of the system with the constraining loading device. We propose a scaling of the problem allowing one to represent the global minimizer as a collection of localized interfaces with explicitly known long-range interaction. In this limit the augmented Ericksen’s problem can be analyzed completely and the equilibrium spacing of the periodic microstructure can be expressed as a function of the prescribed average displacement. We then study the inertial dynamics of the system and demonstrate how the nucleation and growth of the microstructures result in the predicted stable pattern. Our results are particularly relevant for the modeling of twined martensite inside the austenitic matrix.

Supported in part by NSF grant DMS-9703727.

Supported in part by NSF grants DMS-9501433, DMS-9803572.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ball and R. James, The Mathematics of Microstructure. Birkhäuser, to appear.

    Google Scholar 

  2. J. Ball, R. James, R. Pego and P. Swart, On the dynamics of fine structure. J. Nonlinear Sci. 1 (1991) 17–70.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher space dimensions. J. Stat. Phys. 95 (1999) 1119–1139.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138 (1997) 105–136.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Brandon, T. Liu and R. Rogers, Phase transitions and hysteresis in nonlocal and order parameter models. Meccanica 30(5) (1995) 541–565.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Carr, M. Gurtin and M. Slemrod, Structured phase transitions on a finite interval. Arch. Rational Mech. Anal. 86 (1984) 317–351.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability. J. Differential Equations 155 (1999) 17–43.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Dal Maso, An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and Applications. Birkhäuser, Boston (1993).

    Google Scholar 

  9. J. Ericksen, Equilibrium of bars. J. Elasticity 5 (1975) 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL (1992).

    MATH  Google Scholar 

  11. R. FitzHugh, Biological Engineering, H. Schwan (ed.), McGrow-Hill, New York (1969).

    Google Scholar 

  12. R. Fosdick and D. Mason, Single phase energy minimizers for materials with nonlocal spatial dependence. Quart. Appl. Math. 54(1) (1996) 161–195.

    MathSciNet  MATH  Google Scholar 

  13. R. Fosdick and D. Mason, On a model of nonlocal continuum mechanics Part II: Structure, Asymptotics, and Computations. J. Elasticity 48 (1997) 51–100.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Fosdick and D. Mason, On a model of nonlocal continuum mechanics, Part I: Existence and regularity. SIAM J. Appl. Math. 58(4) (1998) 1278–1306.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Hewitt and K. Stromberg, Real and Abstract Analysis. Springer, Berlin (1965).

    Book  MATH  Google Scholar 

  16. S. Kartha, D. Krumhansl, J. Sethna and L. Wickman, Disorder driven pretransitional tweed in martensitic transformations. Phys. Rev. B 52 (1995) 803–822.

    Article  Google Scholar 

  17. A. Khachaturian, Theory of Structural Deformations in Solids. Wiley, New York (1983).

    Google Scholar 

  18. M. Killough, A diffusion interface approach to the development of microstructure in martensite, PhD Thesis, New York University (1998).

    Google Scholar 

  19. R. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure. Appl. Math. 47 (1994) 405–435.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Luskin, On the computation of crystalline microstructure. Acta Numerica 5 (1996) 191–258.

    Article  MathSciNet  Google Scholar 

  21. L. Modica, The gradient of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 357–383.

    Article  MathSciNet  Google Scholar 

  22. S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Cal. War. Partial Diff. Equations 1 (1993) 169–204.

    Article  MATH  Google Scholar 

  23. S. Müller, Variational Models for Microstructure and Phase Transitions, Lecture Notes. Max-Plank-Institut, Leipzig (1998).

    Google Scholar 

  24. R. Peierls, The size of a dislocation. Proc. Phys. Soc. 52 (1940) 34–37.

    Article  Google Scholar 

  25. M. Pitteri and G. Zanzotto, Continuum Models of Phase Transitions and Twinning in Crystals. CRC/Chapman&Hall, London, to appear.

    Google Scholar 

  26. X. Ren and M. Winter, Young measures in a nonlocal phase transition problem. Proc. Roy. Soc. Edinburgh A 127 (1997) 615–637.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Rogers and L. Truskinovsky, Discretization and hysteresis. Physica B 233 (1997) 370–375.

    Article  Google Scholar 

  28. A. Roytburd, Martensitic transformation as a typical phase trnsformation in solids. Solid State Phys. 34(1978)317–390.

    Article  Google Scholar 

  29. M. Slemrod, Admissibility criteria for propagating phase boundaries in a Van Der Waals fluid. Arch. Rational Mech. Anal. 81 (1983) 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prizmatic bars. Philos. Mag. Ser. 6 41 (1921) 744.

    Article  Google Scholar 

  31. L. Truskinovsky, Equilibrium phase boundaries. Soviet. Phys. Dokl. 27 (1982) 551–553.

    Google Scholar 

  32. L. Truskinovsky, About the normal growth approximation in the dynamical theory of phase transitions. Cont. Mech. Thermodyn. 6 (1993) 185–208.

    Article  MathSciNet  Google Scholar 

  33. L. Truskinovsky and G. Zanzotto, Finite scale microstructures and metastability in one-dimensional elasticity. Meccanica 30 (1995) 577–589.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Truskinovsky and G. Zanzotto, Ericksen’s bar revisited: Energy wiggles. J. Mech. Phys. Solids 44(8) (1996) 1371–1408.

    Article  MathSciNet  Google Scholar 

  35. A. Vainchtein, T. Healey, P. Rosakis and L. Truskinovsky, The role of the spinodal in one-dimensional phase transitions microstructures. Phys. D 115 (1998) 29–48.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Roger Fosdick.

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ren, X., Truskinovsky, L. (2000). Finite Scale Microstructures in Nonlocal Elasticity. In: Carlson, D.E., Chen, YC. (eds) Advances in Continuum Mechanics and Thermodynamics of Material Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0728-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0728-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3837-9

  • Online ISBN: 978-94-010-0728-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics