Skip to main content
  • 231 Accesses

Abstract

Herein we derive, under the micromechanical model we proposed earlier, Man and Paroni [14], a complete set of formulae for the twelve material constants in the acoustoelastic constitutive equation for orthorhombic aggregates of cubic crystallites. We present also a second model and compare its predictions on the material constants with those of the first model. Both these models lead to constitutive equations which are indifferent to rotation of reference placement. This allows us to appeal to a new representation theorem (Paroni and Man [15]), which greatly facilitates our derivation of the formulae for the material constants. The second model introduced in this paper is intimately related to some previous averaging theories in the literature. We explain why and in what sense our second model could be taken as a generalization of its predecessors.

To Roger Fosdick, Natural philosopher par excellence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Truesdell, The Mechanical Foundations of Elasticity and Fluid Dynamics. Gordon and Breach, New York (1966).

    Google Scholar 

  2. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. Springer, Berlin (1992).

    MATH  Google Scholar 

  3. C.-S. Man and W.Y. Lu, Towards an acoustoelastic theory for measurement of residual stress. J. Elasticity 17 (1987) 159–182.

    Article  MATH  Google Scholar 

  4. D.S. Hughes and J.L. Kelly, Second-order elastic deformation of solids. Phys. Rev. 92 (1953) 1145–1149.

    Article  MATH  Google Scholar 

  5. T.D. Murnaghan, Finite Deformation of an Elastic Solid. Wiley, New York (1951).

    MATH  Google Scholar 

  6. R.A. Toupin and B. Bernstein, Sound waves in deformed perfectly elastic materials. Acoustoelastic effect. J.Acoust. Soc. Am. 33 (1961) 216–225.

    Article  MathSciNet  Google Scholar 

  7. R.N. Thurston and K. Brugger, Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. A 133 (1964) 1604–1610.

    Google Scholar 

  8. Y.-H. Pao, W. Sachse and H. Fukuoka, Acoustoelasticity and ultrasonic measurements of residual stress. In: W.P. Mason and R.N. Thurston (eds), Physical Acoustics, Vol. 17. Academic Press, Orlando (1984) pp. 61–143.

    Google Scholar 

  9. D.I. Crecraft, The measurement of applied and residual stresses in metals using ultrasonic waves. J. Sound Vib. 5 (1967) 173–192.

    Article  Google Scholar 

  10. H.J. Bunge, Texture Analysis in Materials Science. Butterworth’s, London (1982).

    Google Scholar 

  11. R.-J. Roe, Description of crystallite orientation in polycrystalline materials. III. General solution to pole figures. J. Appl. Phys. 36 (1965) 2024–2031.

    Article  Google Scholar 

  12. C.M. Sayers, Ultrasonic velocities in anisotropic polycrystalline aggregates. J. Phys. D 15 (1982) 2157–2167.

    Article  Google Scholar 

  13. G.C. Johnson, Acoustoelastic response of a polycrystalline aggregate with orthotropic texture. ASMEJ. Appl. Mech. 52 (1985) 659–663.

    Article  Google Scholar 

  14. C.-S. Man and R. Paroni, On the separation of stress-induced and texture-induced birefringence in acoustoelasticity. J. Elasticity 45 (1996) 91–116.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Paroni and C.-S. Man, Constitutive equations of elastic polycrystalline materials. Arch. Rational Mech. Anal. 150 (1999) 153–177.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Truesdell and R. Toupin, The classical field theories. In: S. Flügge (ed.), Encyclopedia of Physics, Vol. III/1. Springer, Berlin (1960) pp. 226–793.

    Google Scholar 

  17. L.E. Malvern, Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ (1969).

    Google Scholar 

  18. P.R. Morris, Averaging fourth-rank tensors with weight functions. J. Appl. Phys. 40 (1969) 447–448.

    Article  Google Scholar 

  19. H. Bross, Berechnung der elastischen konstanten dritter Ordnung der alkalihalogenidkristalle. J. Physik 175 (1963) 345–369.

    Article  Google Scholar 

  20. R. Chang, Relationships between the nonlinear elastic constants of monocrystalline and polycrystalline solids of cubic symmetry. Appl. Phys. Lett. 11 (1967) 305–308.

    Article  Google Scholar 

  21. G.R. Barsch, Relation between third-order elastic constants of single crystals and polycrystals. J. Appl. Phys. 39 (1968) 3780–3793.

    Article  Google Scholar 

  22. G.C. Johnson, Acoustoelastic response of polycrystalline aggregates exhibiting transverse isotropy. J. Nondestructive Evaluation 3 (1982) 1–8.

    Article  Google Scholar 

  23. T. Tokuoka and Y. Iwashimizu, Acoustical birefringence of ultrasonic waves in deformed isotropic elastic materials. Internat. J. Solids Struct. 4 (1968) 383–389.

    Article  Google Scholar 

  24. T. Tokuoka and M. Saito, Elastic wave propagations and acoustical birefringence in stressed crystals. J. Acoust. Soc. Am. 45 (1968) 1241–1246.

    Article  Google Scholar 

  25. P. Haupt, Y.-H. Pao and K. Hutter, Theory of incremental motion in a body with initial elasto-plastic deformation. J. Elasticity 28 (1992) 193–221.

    Article  MathSciNet  MATH  Google Scholar 

  26. D.C. Wallace, Thermoelastic theory of stressed crystals and higher-order elastic constants. In: H. Ehrenreich, F. Seitz and D. Turnbull (eds), Solid State Physics, Vol. 25. Academic Press, New York (1970) pp. 301–404.

    Google Scholar 

  27. C.M. Sayers and D.R. Allen, The influence of stress on the principal polarisation directions of ultrasonic shear waves in textured steel plates. J. Phys. D 17 (1984) 1399–1413.

    Article  Google Scholar 

  28. G.C. Johnson and W.C. Springer, A comparison of predictions and measurements of the acoustoelastic response of a textured aggregate. In: D.O. Thompson and D.E. Chimenti (eds), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 6B. Plenum, New York (1987) pp. 1495–1503.

    Google Scholar 

  29. G.C. Johnson and W.C. Springer, A comparison of measured and predicted second-and third-order elastic constants of a textured aggregate. Internat. J. Solids Struct. 25 (1989) 609–619.

    Article  Google Scholar 

  30. W. Rudin, Real and Complex Analysis. McGraw-Hill, New York (1987).

    MATH  Google Scholar 

  31. W. Rudin, Functional Analysis. McGraw-Hill, New York (1973).

    MATH  Google Scholar 

  32. C.-S. Man, On the constitutive equations of some weakly-textured materials. Arch. Rational Mech. Anal. 143 (1998) 77–103.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Hirao, K. Aoki and H. Fukuoka, Texture of polycrystalline metals characterized by ultrasonic velocity measurements. J. Acoust. Soc. Am. 81 (1987) 1434–1440.

    Article  Google Scholar 

  34. C.-S. Man, Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals. Nondestr. Test. Eval. 15 (1999) 191–214.

    Article  Google Scholar 

  35. C.-S. Man, Hartig’s law and linear elasticity with initial stress. Inverse Problems 14 (1998) 313–319.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.F. Thomas, Third order elastic constants of aluminum. Phys. Rev. 175 (1968) 955–962.

    Article  Google Scholar 

  37. V.P.N. Sarma and P.J. Reddy, Third-order elastic constants of aluminum. Phys. Status Solidi (a) 10 (1972) 563–567.

    Article  Google Scholar 

  38. R.F.S. Hearmon, Crystal and solid state physics. In: K.H. Hellwege and A.M. Hellwege (eds), Numerical Data and Functional Relationships in Science and Technology, Vol. 11. Springer, New York (1979).

    Google Scholar 

  39. C.-S. Man and R. Paroni, Explicit formulae showing the effects of texture on acoustoelastic coefficients. In: D.O. Thompson and D.E. Chimenti (eds), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16. Plenum, New York (1997) pp. 1683–1690.

    Google Scholar 

  40. C.-S. Man, W.Y Lu and J. Li, Effects of crystallographic texture on the acoustoelastic coefficients for Rayleigh waves in aluminum. In: D.O. Thompson and D.E. Chimenti (eds), Review of Progress in Quantitative Nondestructive Evaluation, Vol. 18. Plenum, New York (1999) pp. 1879–1886.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paroni, R., Man, CS. (2000). Two Micromechanical Models in Acoustoelasticity: a Comparative Study. In: Carlson, D.E., Chen, YC. (eds) Advances in Continuum Mechanics and Thermodynamics of Material Behavior. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0728-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0728-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3837-9

  • Online ISBN: 978-94-010-0728-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics