Smart Structures in Robotics

  • F. Dignath
  • M. Hermle
  • W. Schiehlen
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 89)


The control of flexible manipulators requires control strategies considering the elastic deformations of the robot. In this paper a hierarchical control concept is presented for serial-chain manipulators equipped with electrical drives in the joints and, additionally, actuating and sensing devices located on the elastic links between the joints, see Figure 1. With this additional actuators and sensors, Static Dissipative Controllers (SDC) can be used resulting in a low-authority control strategy counterbalancing elastic disturbances. The decentralized linear control allows also a static correction of the elastic deformations and can be combined with any given joint level control for the gross motion of the manipulator. In this paper, for a SCARA type robot an inverse dynamics based controller and Static Dissipative Controllers axe combined and adapted by parameter optimization.


Rigid Body Motion Reference Trajectory Inverse Dynamic Flexible Manipulator Smart Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    D. Bestie and P. Eberhard. NEWOPT/AIMS 2.2. Ein Programmsystem zur Analyse und Optimierung von mechanischen Systemen. Manual AN-35. Institute B of Mechanics, University of Stuttgart, 1994.Google Scholar
  2. [2]
    M. Hermle and P. Eberhard. Control, and parameter optimization of flexible robots. Mechanics of Structures and Machines, accepted for publication.Google Scholar
  3. [3]
    L. Ingber. Very fast simulated reannealing. Mathematical Computational Modeling, 12, 8, 967–973, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Joshi. Control of Large Flexible Space Structures. Springer Verlag; Berlin, 1989.CrossRefzbMATHGoogle Scholar
  5. [5]
    U. Kleemann. Regelung elastischer Roboter, VDI-Fortschritt-Berichte. Reihe 8, No. 191, VDI Verlag; Düsseldorf, 1989.Google Scholar
  6. [6]
    L. Kolender. Bahnberechnung für elastische Roboter mit Hilfe der Spline—Interpolation. Studienarbeit STUD-175, December 1999. Institute B of Mechanics, University of Stuttgart.Google Scholar
  7. [7]
    W. Schiehlen. Technische Dynamik. B.G. Teubner; Stuttgart, 1986.zbMATHGoogle Scholar
  8. [8]
    W. Schiehlen and H. Schönerstedt. Reglerentwurf zur aktiven Schwingungsdämpfung von Balkenstrukturen. In Gabbert, U. (Ed.), Smart Mechanical Systems — Adaptronics, VDI-Fortschritt-Berichte. Reihe 11, Nr. 244, VDI-Fortschritt-Berichte, VDI Verlag; Düsseldorf, 1997.Google Scholar
  9. [9]
    A. Shabana. Dynamics of Multibody Systems. University Press; Cambridge, 1998.zbMATHGoogle Scholar
  10. [10]
    M. Spong and M. Vidyasagar. Robot Dynamics and Control. Wiley; New York, 1989.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • F. Dignath
    • 1
  • M. Hermle
    • 1
  • W. Schiehlen
    • 1
  1. 1.Institute B of MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations