Advertisement

An Integral Equation Approach for Velocity Feedback Control Using Piezoelectric Patches

  • J. M. Sloss
  • J. C. BruchJr.
  • S. Adali
  • I. S. Sadek
Conference paper
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 89)

Abstract

Piezoelectric actuators and sensors are being used increasingly in applications involving vibration/position/shape control devices. Examples where they have been effectively employed include acoustics for noise cancellation [1, 2, 3] with applications to reduce interior noise in aircraft, aerodynamics to adjust wing surfaces [4] and electronics where they are used in the reading heads in video cassette recorders and compact discs as positioning devices [5].

Keywords

Integral Equation Piezoelectric Actuator Noise Cancellation Interior Noise Integral Equation Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    Clark, R.L. and Fuller, C.R.: A model reference approach for implementing active structural acoustic control, J. Acoustical Society of America 92 (1992), 1534–1545.CrossRefGoogle Scholar
  2. 2.
    Clark, R.L. and Fuller, C.R.: Experiments on active control of structurally radiated sound using multiple piezoelectric actuators, J. Acoustical Society of America 91 (1992), 3313–3320.CrossRefGoogle Scholar
  3. 3.
    Hsu, C.Y., Lin, C.C. and Gaul, L.: Vibration and sound radiation controls of beams using layered modal sensors and actuators, Smart Materials and Structures 7 (1998), 446–455.CrossRefGoogle Scholar
  4. 4.
    Barrett, R.: Active plate and wing research using EDAP elements, Smart Materials and Structures 1 (1992), 214–226.CrossRefGoogle Scholar
  5. 5.
    Huber, J.E., Fleck, N.A. and Ashby, M.F.: The selection of mechanical actuators based on performance indices, Proceedings of the Royal Society, London A 453 (P97), 2185–2205.Google Scholar
  6. 6.
    Koconis, D.B., Kollar, L.P. and Springer, G.S.: Shape control of composite plates and shells with embedded actuators, I. Voltage specified, J. Composite Materials 28(5) (1994), 415–458.Google Scholar
  7. 7.
    Koconis, D.B., Kollar, L.P. and Springer, G.S.: Shape control of composite plates and shells with embedded actuators, II. Desired shape specified, J. Composite Materials 28(5) (1994), 459–482.Google Scholar
  8. 8.
    Lin, C.C., Hsu, C.Y. and Huang, H.N.: Finite element analysis on deflection control of plates with piezoelectric actuators, J. Composite Structures 35 (1996), 423–433.CrossRefGoogle Scholar
  9. 9.
    Rao, S.S. and Sunar, M.: Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey, Applied Mechanics Reviews 47 (1994), 113–123.CrossRefGoogle Scholar
  10. 10.
    Tzou, H.S.: Piezoelectric Shells, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.CrossRefGoogle Scholar
  11. 11.
    Banks, H.T., Smith, R.C. and Wang, Y.: The modeling of piezoceramic patch interactions with shells, plates and beams, Quarterly of Applied Mathematics LIII(2) (1995), 353–381.MathSciNetGoogle Scholar
  12. 12.
    Sloss, J.M., Bruch, Jr., J.C., Adali, S. and Sadek, I.S.: Piezoelectric patch control using an integral equation approach, J. Thin-Walled Structures, (in press).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • J. M. Sloss
    • 1
  • J. C. BruchJr.
    • 1
    • 2
  • S. Adali
    • 3
  • I. S. Sadek
    • 4
  1. 1.Dept. of Math. Univ. of Cal.Santa BarbaraUSA
  2. 2.Dept. of Mech & Envr. Engr.Univ. of Cal.Santa BarbaraUSA
  3. 3.School of Mech. Engr.Univ. of NatalDurbanSouth Africa
  4. 4.Dept. of Comp. Sci., Math., and Stat.Amer. Univ. of SharjahSharjahUnited Arab Emirates

Personalised recommendations