Advertisement

Modeling of Bending Actuators Based on Functionally Gradient Materials

  • T. Hauke
  • A. Z. Kouvatov
  • R. Steinhausen
  • W. Seifert
  • H. T. Langhammer
  • H. Beige
Conference paper
  • 180 Downloads
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 89)

Abstract

Piezoelectric bending actuators are frequently used when large deflections and low forces are required. Typically, two thin sheets with different piezoelectric coefficients are joined by a glue layer [1]. The glue layer may peel off or crack during high temperature changes. Additionally, during bending large mechanical stresses occur especially at the interface between the sheets. This may lead to a nucleation and propagation of microcracks, or a mechanical depolarization of the material. All these phenomena can reduce the lifetime and reliability of the actuators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Uchino, K., Piezoelectric Actuators and ultrasonic Motors, Kluwer Academic Publishers, Boston/Dordrecht/London (1997)Google Scholar
  2. 2.
    Haertling, G.H., “Chemically reduced PLZT ceramics for ultrahigh displacement actuators”, Ferroelectrics, 154 1–4 (1994), 101CrossRefGoogle Scholar
  3. 3.
    Kawai, T., Miyazaki, S., Araragi, M., “A piezoelectric actuator using functionally gradient material”, Yokogawa Technical Report 14 (1992), 6Google Scholar
  4. 4.
    Wu, C.C.M., Kahn, M., Moy, W., “Piezoelectric ceramics with functional gradients: A new application in material design”, Journal of the American Ceramic Society 79 3 (1996), 809CrossRefGoogle Scholar
  5. 5.
    Zhu, X., Wang, Q., Meng, Z., “A functionally gradient piezoelectric actuator prepared by powder metallurgical process in PNN-PZ-PT system”, Journal of Material Science Letters 14 (1995), 516CrossRefGoogle Scholar
  6. 7.
    Li, G., Furman, E., Haertling, G.H., “Fabrication and properties of PSZT antiferroelectric rainbow actuators”, Ferroelectrics 188 (1996), 223CrossRefGoogle Scholar
  7. 8.
    Kawai, T., Miyazaki, S., Araragi, M., “A new method for forming a piezoelectric FGM using a dual dispenser system’, Proceedings of The First International Symposium of Functionally Gradient Materials, Sendai, Japan, (1990), 191Google Scholar
  8. 9.
    Furman, E., Li, G., Haertling, G.H., “An investigation of the resonance properties of rainbow devices’, Ferroelectrics 160 (1994), 357CrossRefGoogle Scholar
  9. 10.
    X. Zhu, Z. Meng, “Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator’, Sensors and Actuators A, A48 (1995), 169CrossRefGoogle Scholar
  10. 11.
    Marcus, M..A., “Performance characteristics of piezoelectric polymer flexure mode devices’, Ferroelectrics 57 (1984) 203CrossRefGoogle Scholar
  11. 12.
    Landolt-Börnstein, Numerical data andfunctional relationships in science and technology, Vol. 16, 1981, Springer Verlag Berlin Heidelberg New YorkGoogle Scholar
  12. 13.
    Kouvatov, A., Steinhausen, R., Seifert, W., Hauke, T., Langhammer, H.T., Beige, H., Abicht, H.-P., “Comparison between bimorphic and polymorphic bending devices” Journal of the European Ceramic Society 19(1999), 1153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • T. Hauke
    • 1
  • A. Z. Kouvatov
    • 1
  • R. Steinhausen
    • 1
  • W. Seifert
    • 1
  • H. T. Langhammer
    • 1
  • H. Beige
    • 1
  1. 1.FB PhysikMartin-Luther-Universität Halle-WittenbergHalle

Personalised recommendations