Skip to main content

Continuous Systems

  • Chapter
  • 343 Accesses

Abstract

Consider the differential system

$$ x' = A(t)x + f(t,x),t \in [0,\infty )$$
((3.1.1))

where the n × n matrix A is defined and continuous on [0, ∞), and f is a n-vector defined and continuous on [0, ∞) × ℝn. Let B[0,∞) be the space of all bounded, continuous n-vector valued functions and let L be a bounded linear operator mapping B[0, ∞) (or a subspace of B[0, ∞)) into ℝn. In this chapter we mainly study the differential system (3.1.1) subject to the boundary conditions

$$L[x] = \ell \in \mathbb{R}^n .$$
((3.1.2))

In Section 3.2 we consider the system (3.1.1) with f(t,x) = b(t) i.e. the linear system

$$ x' = A(t)x + b(t),t \in [0,\infty )$$
((3.1.3))

together with (3.1.2). Here we provide necessary and sufficient conditions for the existence of solutions. In Section 3.3 we apply various fixed point theorems to establish the existence of solutions to the nonlinear problem (3.1.1), (3.1.2). Then in Section 3.4 we offer sufficient conditions for the existence of at least one value of the IRn-valued parameter λ so that the system

$$ \begin{gathered}x' = A(t)x + g(t,x,\lambda ),t \in [0,\infty ) \hfill \\x(0) = \xi \hfill \\\end{gathered}$$
((3.1.4))

has a solution satisfying (3.1.2). Finally, in Section 3.5 we establish existence theory for the system (3.1.1) with A ≡ 0 i.e.

$$ x' = f(t,x)t \in [0,\infty )$$
((3.1.5))

together with the boundary conditions

$$N[x] = 0,$$
((3.1.6))

where N is a nonlinear operator mapping B[0, ∞) (or a subspace of B[0, ∞)) into ℝn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.7. References

  1. R.P. Agarwal, The numerical solution of multipoint boundary value problems, J. Comp. Appl. Math. 5(1979), 17–24.

    Article  MATH  Google Scholar 

  2. R.P. Agarwal, Contraction and approximate contraction with an application to multi-point boundary value problems, J. Comp. Appl. Math. 9(1983), 315–325.

    Article  MATH  Google Scholar 

  3. R.P. Agarwal, Component-wise convergence of quasilinear method for nonlinear boundary value problems, Hiroshima Math. J. 22(1992), 525–541.

    MathSciNet  MATH  Google Scholar 

  4. R.P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, Cambridge, to appear.

    Google Scholar 

  5. G. Anichini, Nonlinear problems for systems of differential equations, Nonlinear Analysis 1(1977), 691–699.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Avramescu, Sur l’ éxistence des solutions convergentes d’équations différentielles non linéaires, Ann. Mat. Pura Appl. 4(1969), 147–168.

    Article  MathSciNet  Google Scholar 

  7. E.S. Birger, On the error estimation for the replacement of the bounded-ness condition for the solution of a linear differential equation on the infinite interval, USSR J. Comput. Math, and Math. Phys. 8(1968), 674–676.

    MathSciNet  Google Scholar 

  8. E.S. Birger and N.B. Lyalikova, On finding solutions with given condition at the infinity for certain systems of ordinary differential equations, USSR J. Comput. Math, and Math. Phys. 5(1965), 979–990.

    Google Scholar 

  9. R. Conti, Recent trends in the theory of boundary value problems for ordinary differential equations, Boll. UMI 22(1967), 135–178.

    MathSciNet  MATH  Google Scholar 

  10. C. Corduneanu, Sur les systémes differentiels de la forme y′ = A(x, y)y + b(x,y), Anal. Stiint. Univ. “Al I Cuza” Iasi 4(1958), 45–52.

    MathSciNet  Google Scholar 

  11. F.R. de Hoog and R. Weiss, An approximation theory for boundary value problems on infinite intervals, Computing 24(1980), 227–239.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.G. Kartsatos, A stability property of the solution to a boundary value problem on an infinite interval, Math. Japonicae 19(1974), 187–194.

    MathSciNet  Google Scholar 

  13. A.G. Kartsatos, The Leray-Schauder theorem and the existence of solutions to boundary value problems on infinite intervals, Indiana Univ. Math. J. 23(1974), 1021–1029.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.G. Kartsatos, A boundary value problem on an infinite interval, Proc. Edin. Math. Soc. 19(1974/75), 245–252.

    Article  MathSciNet  Google Scholar 

  15. A.G. Kartsatos, The Hildebrandt-Graves theorem and the existence of solutions of boundary value problems on infinite intervals, Math. Nachr. 67(1975), 91–100.

    Article  MathSciNet  MATH  Google Scholar 

  16. A.G. Kartsatos, Locally invertible operators and existence problems in differential systems, Tohoku Math. J. 28(1976), 167–176.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Lentini and H.B. Keller, Boundary value problems on semi-infinite intervals and their numerical solution, SIAM J. Numer. Anal. 17(1980), 577–604.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Ec. Norm. Sup., S. III 51(1934), 45–78.

    MathSciNet  Google Scholar 

  19. P.A. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals, SIAM J. Math. Anal. 13(1982), 484–513.

    Article  MathSciNet  MATH  Google Scholar 

  20. P.A. Markowich, Analysis of boundary value problems on infinite intervals, SIAM J. Math. Anal. 14(1983), 11–37.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.M.M. Mattheij, The conditioning of linear boundary value problems, SIAM J. Numer. Anal. 19(1982), 963–978.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.M.M. Mattheij, On the computation of solutions of boundary value problems on infinite intervals, Math. Comp. 48(1987), 533–549.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Mitsui, Iterative approximation methods for non-linear boundary value problems of ODE, Lecture Notes in Num. Appl. Anal. (The Newton Method and Related Topics) 3 (1981), 105–125.

    MathSciNet  Google Scholar 

  24. T. Ojika and T. Kasue, Initial-value adjusting method for the solution of nonlinear multipoint boundary-value problems, J. Math. Anal. Appl. 69(1979), 359–371.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Schmeiser, Approximate solution of boundary value problems on infinite intervals by collocation methods, Math. Comp. 46(1986), 479–490.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Shridharan and R.P. Agarwal, Stationary and nonstationary iterative methods for nonlinear boundary value problems, Mathl. Comput. Modelling 18(1993), 43–62.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Shridharan and R.P. Agarwal, General iterative methods for nonlinear boundary value problems, J. Austral. Math. Soc. Ser. B 37(1995), 58–85.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Urabe, An existence theorem for multi-point boundary value problems, Funkcialaj Ekvacioj 9(1966), 43–60.

    MathSciNet  MATH  Google Scholar 

  29. M. Urabe, The degenerate case of boundary value problems associated with weakly nonlinear differential systems, Pub. Resh. Inst. Mathl. Sci., Kyoto Univ. 4(1968), 545–584.

    Article  MathSciNet  Google Scholar 

  30. T. Yamamoto, An existence theorem of solution to boundary value problems and its applications to error estimates, Math. Japonica 27(1982), 301–318.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Agarwal, R.P., O’Regan, D. (2001). Continuous Systems. In: Infinite Interval Problems for Differential, Difference and Integral Equations. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0718-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0718-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3834-8

  • Online ISBN: 978-94-010-0718-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics