Collisional Effects in the Edgeworth-Kuiper Belt

  • Donald R. Davis
  • Paolo F. Farinella
Part of the Astrophysics and Space Science Library book series (ASSL, volume 261)

Abstract

The Edgeworth—Kuiper (E—K) belt, a population of small bodies a thousand times greater in number than that of the main asteroid belt orbiting outside Neptune’s orbit, is undergoing collisional comminution. The discovery of these bodies confirmed strong dynamical evidence that short period comets come from a transneptunian source region. Like main belt asteroids, the size distribution of E—K belt objects has been affected by mutual impacts over Solar System history. Collisional evolution studies of the E-K belt show that bodies larger than several tens of km in diameter survive over times comparable to the age of the Solar System, hence their size distribution reflects accretionary processes in the early Solar System. At smaller sizes, however, impacts have produced a collisionally relaxed population of fragments which are predicted to have a power-law size distribution with an incremental diameter exponent near −3.5. Collisions can also inject km-sized fragments into dynamical resonances, whence they can be transported to the inner Solar System to become short period comets. However, dynamical mechanisms are needed to produce the Centaurs, a population of much larger bodies than the Jupiter family comets.

Keywords

Dust Welding Lution Librium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cochran, A.L., Levison, H.F., Stern, S.A. and Duncan, M.J. (1995) The discovery of Halley-sized Kuiper belt objects using the Hubble Space Telescope, Astrophys. J. 455, 342–346.ADSCrossRefGoogle Scholar
  2. Davis, D.R., and Farinella, P. (1997) Collisional evolution of Edgeworth-Kuiper belt objects, Icarus 125, 50–60.ADSCrossRefGoogle Scholar
  3. Davis, D.R., Weidenschilling, S.J. and Farinella, P. (1999) Accretion of a massive Edgeworth-Kuiper belt, in Lunar Planet. Sci. XXX, Abstract #1883, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
  4. Davis, D.R., Weidenschilling, S.J., Farinella, P. Paolicchi, P. and Binzel, R.P. (1989) Asteroid collisional history: Effects on sizes and spins, in Asteroids II (Eds. R.P. Binzel, T. Gehrels, and M.S. Matthews), Univ. of Arizona, Tucson, pp. 805–826.Google Scholar
  5. Davis, D.R., Farinella, P. and Weidenschilling, S.J. (2000) Accretion and collisional erosion of a massive Edgeworth-Kuiper belt: Constraints on the initial population, to be submitted to Icarus.Google Scholar
  6. Dell’Oro, A., Marzari, F., Paolicchi, P. and Vanzani, V. (2000). Updated collisional probabilities of minor body populations, submitted to Astron. Astrophys..Google Scholar
  7. Dohnanyi, J.W. (1969) Collisional model of asteroids and their debris, J. Geophys. Res. 74, 2531–2554.ADSCrossRefGoogle Scholar
  8. Duncan, M., Quinn, T. and Tremaine, S. (1988) The origin of short-period comets, Astrophys. J. 328, L69–73.ADSCrossRefGoogle Scholar
  9. Duncan, M.J., Levison, H.F. and Budd, S.M. (1995) The dynamical structure of the Kuiper belt, Astron. J. 110, 3073–3081.ADSCrossRefGoogle Scholar
  10. Edgeworth, K.E. (1949) The origin and evolution of the Solar System, Mon. Not. Roy. Astron. Soc. 109, 600–609.ADSGoogle Scholar
  11. Farinella, P., and Davis, D.R. (1996) Short period comets: Primordial bodies or collisional fragments?, Science 273, 938–941.ADSCrossRefGoogle Scholar
  12. Fernández, J.A. (1980) On the existence of a comet belt beyond Neptune, Mon. Not. Roy. Astron. Soc. 192, 481–491.ADSGoogle Scholar
  13. Gladman, B., Kavelaars, J., Nicholson, P.D., Loredo, T.J. and Burns, J.A. (1998) Pencil-beam surveys for faint trans-Neptunian objects, Astron. J. 116, 2042–2054.ADSCrossRefGoogle Scholar
  14. Jewitt, D., Luu, J.X. and Trujillo, C. (1998) Large Kuiper Belt objects: The Mauna Kea 8K CCD survey, Astron. J. 115, 2125–2135.ADSCrossRefGoogle Scholar
  15. Jewitt, D., and Luu, J.X. (1993) Discovery of the candidate Kuiper belt object 1992 QB1, Nature 362, 730–732.ADSCrossRefGoogle Scholar
  16. Jewitt, D., and Meech, K. (1988) Optical properties of cometary nuclei and a preliminary comparison with asteroids, Astrophys. J. 328, 974–986.ADSCrossRefGoogle Scholar
  17. Kenyon, S.J., and Luu, J.X. (1999) Accretion in the early Kuiper Belt: II. Fragmentation, Astron. J. 118, 1101–1119.ADSCrossRefGoogle Scholar
  18. Kuiper, G.P. (1951) On the origin of the solar system, in Astrophysics: A Topical Symposium, (J.A. Hynek, Ed.), McGraw-Hill, New York, pp. 357–424.Google Scholar
  19. Levison, H.F., and Duncan, M.J. (1994) The long-term dynamical behavior of short-period comets, Icarus 108, 18–36.ADSCrossRefGoogle Scholar
  20. Lissauer, J., Pollack, J.B., Wetherill, G.W. and Stevenson, D.J. (1995) Formation of the Neptune system, in Neptune and Triton, Univ. of Arizona Press, Tucson, pp. 37–108.Google Scholar
  21. Luu, J.X., and Jewitt, D.C. (1996) Reflection spectrum of the Kuiper belt object 1993 SC, Astron. J. 111, 499–503.ADSCrossRefGoogle Scholar
  22. Morbidelli, A. (1997) Chaotic diffusion and the origin of comets from the 2/3 resonance in the Kuiper Belt, Icarus 127, 1–12.ADSCrossRefGoogle Scholar
  23. Morbidelli, A., Thomas, F. and Moons, M. (1995) The resonant structure of the Kuiper belt and the dynamics of the first five trans-Neptunian objects, Icarus 118, 322–340.ADSCrossRefGoogle Scholar
  24. Owen, T.C., Mahaffy, P., Niemann, H.B., Atreya, S., Donahue, T., Bar-Nun, A. and de Pater, I. (1999) Low temperature condensates brought heavy elements to Jupiter, Bull. Amer. Astron. Soc. 31,, 1131.ADSGoogle Scholar
  25. Quinn, T., Tremaine, S. and Duncan. M. (1990) Planetary perturbations and the origin of short-period comets, Astrophys. J. 355, 667–679.ADSCrossRefGoogle Scholar
  26. Stern, S.A. (1995) Collision timescales in the Kuiper disk: Model estimates and their implications, Astron J. 110, 856–868.ADSCrossRefGoogle Scholar
  27. Stern, S.A. (1996) Signature of collisions in the Kuiper disk: Model estimates and their implications, Astron. Astrophys. 310, 999–1009.ADSGoogle Scholar
  28. Stern, S.A. and Colwell, J. (1997) Accretion of the Edgeworth-Kuiper belt: Forming 100–1000 km radius bodies at 30 AU and beyond, Astron. J. 114, 841–849.ADSCrossRefGoogle Scholar
  29. Thommes, E.W., Duncan, M.J. and Levison H.F. (2000) The formation of Uranus and Neptune in the Jupiter-Saturn region, Nature 402, 635–638.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Donald R. Davis
    • 1
  • Paolo F. Farinella
    • 2
  1. 1.Planetary Science InstituteTucsonUSA
  2. 2.Univ. di TriesteTriesteItaly

Personalised recommendations