Skip to main content

N-Body Simulations of Moon Accretion

  • Chapter
Collisional Processes in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 261))

Abstract

We review the dynamical processes in accretion of the Moon from an impact-generated disk, based on the results of direct N-body simulations. The important processes are tidal inhibition of accretion within the Roche limit, development of density spiral arms, radial migration of disk mass associated with angular momentum transfer by the spiral arms, formation of particle aggregates by self-gravity, and interaction of formed moonlets with the disk. As a result of the disk evolution, a single large moon is formed at about 3–4R⊕ on a time scale of a month to a year, in most cases. The mass of the formed moon is regulated by the total mass and angular momentum of the initial disk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1986) The origin of the moon and the single impact hypothesis I,Icarus 66, 515–535.

    Article  ADS  Google Scholar 

  • Benz, W., Slattery, W.L., and Cameron, A.G.W. (1987) The origin of the moon and the single impact hypothesis II, Icarus 71, 30–45.

    Article  ADS  Google Scholar 

  • Benz, W., Cameron, A.G.W., and Melosh, H.J. (1989) The origin of the moon and the single impact hypothesis III, Icarus 81, 113–131.

    Article  ADS  Google Scholar 

  • Binney, J., and Tremaine, S. (1987) Galactic Dynamics, Princeton University Press, Princeton.

    MATH  Google Scholar 

  • Cameron, A.G.W. (1997) The origin of the moon and the single impact hypothesis V, Icarus 126, 126–137.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., and Benz, W. (1991) The origin of the moon and the single impact hypothesis IV, Icarus 92, 204–216.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., and Ward, W.R. (1976) The origin of the Moon, in Lunar and Planetary Science VII, Lunar and Planetary Institute, Houston, pp. 120–122.

    Google Scholar 

  • Canup, R.M., and Esposito, L.W. (1995) Accretion in the Roche zone: Co-existence of rings and ringmoons, Icarus 113, 331–352.

    Article  ADS  Google Scholar 

  • Canup, R.M., and Esposito, L.W. (1996) Accretion of the Moon from an impact-generated disk, Icarus 119, 427–446.

    Article  ADS  Google Scholar 

  • Canup, R M., Levison, H.F., and Stewart, G.R. (1999) Evolution of a terrestrial multiple-moon system, Astron. J. 117, 603–620.

    Article  ADS  Google Scholar 

  • Chambers, J.E., Wetherill, G.W., and Boss, A.P. (1996) The stability of multi-planet systems, Icarus 119, 261–268.

    Article  ADS  Google Scholar 

  • Chambers, J.E., and Wetherill, G.W. (1998) Making the terrestrial planets: N-Body integrations of planetary embryos in three dimensions, Icarus 136, 304–327.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. (1969) Ellipsoidal figures of equilibrium, Yale University Press.

    MATH  Google Scholar 

  • Daisaka, H., and Ida, S. (1999) Spatial structure in dense planetary ring induced by self-gravitational instability, Earth, Planet and Space, 51, 1195–1213.

    ADS  Google Scholar 

  • Hartmann, W.K., and Davis, D.R. (1975) Satellite-sized planetesimals and lunar origin, Icarus 24, 504–515.

    Article  ADS  Google Scholar 

  • Hayashi, C, Nakazawa, K., and Nakagawa, Y. (1985) Formation of the solar system, in Protostars and Planets II, eds. D.C. Black and M.S. Matthews, Univ. of Arizona Press, pp. 1100–1153.

    Google Scholar 

  • Ida, S. (1990) Stirring and Dynamical Friction of Planetesimals in the Solar Gravitational Field, Icarus 88, 129–145.

    Article  ADS  Google Scholar 

  • Ida, S., Canup R.M., and Stewart, G.R. (1997) Lunar accretion from an impact-generated disk, Nature 389, 353–357.

    Article  ADS  Google Scholar 

  • Kipp, M.E., and Melosh, H. J. (1987) A numerical study of the giant impact origin of the Moon: The first half hour, in Lunar and Planetary Science XVIII, Lunar and Planetary Institute, Houston, pp. 491–492.

    Google Scholar 

  • Kokubo, E., and Ida, S. (1998) Oligarchic growth of protoplanets, Icarus 131, 171–178.

    Article  ADS  Google Scholar 

  • Kokubo, E., and Ida, S. (2000) Formation of Protoplanets from Planetesimals in the Solar Nebula, Icarus 143, 15–27.

    Article  ADS  Google Scholar 

  • Kokubo, E., Canup, R.M., and Ida, S. (2000) Lunar accretion from an impact-generated disk, in Origin of the Earth and Moon, eds. R.M. Canup and K. Righter, Univ. of Arizona Press, in press.

    Google Scholar 

  • Kokubo, E., Ida, S., and Makino, J. (2000) Evolution of a circumterrestrial disk and formation of a single moon, submitted.

    Google Scholar 

  • Kokubo, E., Yoshinaga, K., and Makino, J. (1998) On a time-symmetric Hermite integrator for planetary N-body simulation, Mon. Not. R. Astron. Soc. 297, 1067–1072.

    Article  ADS  Google Scholar 

  • Lissauer, J.J., and Stewart, G.R. (1993) Growth of planets from planetesimals, in Protostars and Planets III, eds. E.H. Levy and J.I. Lunine, Univ. of Arizona Press, pp. 1061–1088.

    Google Scholar 

  • Lissauer, J.J. (1987) Time scales for planetary accretion and the structure of the proto-planetary disk, Icarus 69, 249–265.

    Article  ADS  Google Scholar 

  • Lynden-Bell, D., and Kalnajs, A.J. (1972) On the generating mechanism of spiral structure, Mon. Not. R. Astron. Soc. 157, 1–30.

    ADS  Google Scholar 

  • Lynden-Bell, D., and Pringle, J.E. (1974) The evolution of viscous discs and the origin of the nebular variable, Mon. Not. R. Astron. Soc. 168, 603–637.

    ADS  Google Scholar 

  • Makino, J., and Aarseth, S.J. (1992) On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems, Publ. Astron. Soc. Jpn. 44, 141–151.

    ADS  Google Scholar 

  • Mignard, F. (1980) The evolution of the lunar orbit revisited, II, Moon and Planets 23,185–201.

    Article  ADS  Google Scholar 

  • Nakazawa, K., and Ida, S. (1988) Hill’s approximation in the three-body problem, Prog.Theor. Physics Supp. 96, 167–174.

    Article  ADS  Google Scholar 

  • Ohtsuki, K. (1993) Capture probability of colliding planetesimals: Dynamical constraints on the accretion of planets, satellites and ring particles, Icarus 106, 228–246.

    Article  ADS  Google Scholar 

  • Ohtsuki, K., Ida, S., Nakagawa, Y., and Nakazawa, K. (1993) Planetary accretion in the solar gravitational field, in Protostars and Planets III, eds. E.H. Levy and J.I. Lunine,Univ. of Arizona Press, pp. 1089–1107.

    Google Scholar 

  • Safronov, V. (1969) Evolution of the protoplanetary cloud and formation of the Earth and planets, Nauka Press, Moscow.

    Google Scholar 

  • Salo, H. (1995) Simulations of dense planetary rings. III. Self-gravitating identical particles, Icarus 117, 287–312.

    Article  ADS  Google Scholar 

  • Stevenson, D.J. (1987) Origin of the Moon, Ann. Rev. Earth Plant. Sci. 15, 271–315.

    Article  ADS  Google Scholar 

  • Takeda, T., Tanaka, H., and Ida, S. (2000) in preparation

    Google Scholar 

  • Thompson, C, and Stevenson, D.J. (1988) Gravitational instability in two-phase disks and the origin of the Moon, Astrophys. J. 333, 452–481.

    Article  ADS  Google Scholar 

  • Toomre, A. (1964) On the gravitational stability of a disk of stars Astrophys. J. 139,1217–1238.

    Article  ADS  Google Scholar 

  • Ward, W.R., and Cameron, A.G.W. (1978) Disk evolution within the Roche limit, in Lunar and Plan. Sci. IX, Lunar and Planetary Institute, Houston, pp. 1205–1207.

    Google Scholar 

  • Wetherill, G.W., and Stewart, G.R. (1989) Accumulation of a swarm of small planetesi-mals, Icarus 77, 330–357.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ida, S., Kokubo, E., Takeda, T. (2001). N-Body Simulations of Moon Accretion. In: Marov, M.Y., Rickman, H. (eds) Collisional Processes in the Solar System. Astrophysics and Space Science Library, vol 261. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0712-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0712-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3832-4

  • Online ISBN: 978-94-010-0712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics