Skip to main content

Size-Frequency Distributions of Planetary Impact Craters and Asteroids

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 261))

Abstract

The size-frequency distributions (SFD) for projectiles which formed craters on terrestrial planets and asteroids Gaspra, Ida, and Mathilde are compared using modern cratering scaling laws. The result shows the relative stability of these distributions during the past 3.7 Gy (Orientale basin and younger formations). The derived projectile size-frequency distribution is compared with the size-frequency distribution of main-belt asteroids. The recent Spacewatch data demonstrate the spectacular similarity of the size distribution of asteroids with diameters larger than 1 km and the population of crater-forming projectiles derived from the cratering data. Consequently one can suppose that the efficiency of the new projectile delivery to planetary crossing orbits does not depend on asteroid size. The migration of large main belt bodies to Mars-crossing orbits or to resonances seems to play an important role in the generation of planet-crossing impactors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvidson, R., Boyce, J., Chapman, C, Cintala, M., Fulchignoni, M, Moore, H., Neukum,G., Schultz, P., Soderblom, L., Strom., R., Woronov, A. and Young, R. (1978) Stan-dard techniques for presentation and analysis of crater size-frequency data, Icarus 37, 467–474.

    Google Scholar 

  • Asphaug, E., Moore, J.M., Morrison, D., Benz, W., Nolan, M.C. and Sullivan, R.J. (1996) Mechanical and geological effects of impact cratering on Ida, Icarus 120, 158–184.

    Article  ADS  Google Scholar 

  • Basaltic Volcanism Study Project (1981) Chapter 8 “Chronology of planetary volcanism by comparative studies of planetary cratering”, in Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, N.Y., pp. 1049–1127.

    Google Scholar 

  • Belton, M.J.S. and 19 co-authors (1994) First images of asteroid 243 Ida, Science 265,1543.

    Article  ADS  Google Scholar 

  • Belton, M.J.S. and 9 co-authors (1992) Galileo encounter with 951 Gaspra- First pictures of an asteroid, Science 257, 1647–1652.

    Article  ADS  Google Scholar 

  • Bryan, J.B., Burton, D.E., Cunningam, M.E. and Lettis, L.A. (1978) A two-dimensional computer simulation of hypervelocity impact cratering: Some preliminary results for Meteor Crater, Arizona, Proc. Lunar Planet. Sci. Conf. 9th, pp. 3931–3964.

    Google Scholar 

  • Campo Bagatin, A., Cellino A., Davis, D.R., Farinella, P. and Paolicchi, P. (1994a) Wavy size distribution for collisional systems with a small-size cutoff, Planet. Space Sci. 42, 1049–1092.

    Google Scholar 

  • Campo Bagatin, A., Farinella, P. and Petit, J.-M. (1994b) Fragment ejection velocities and the collisional evolution of asteroids, Planet. Space Sci. 42, 1099–1107.

    Article  ADS  Google Scholar 

  • Cellino, A., Zappalà, V. and Farinella, P. (1991) The asteroid size distribution from IRAS data, Mon. Not. R. Astr. Soc. 253, 561–574.

    ADS  Google Scholar 

  • Chapman, C.R. (1995) Galileo observations of Gaspra, Ida, and Dactyl: Implications for meteoritics, Meteoritics 30, 496.

    ADS  Google Scholar 

  • Chapman, C.R. and McKinnon, W.B. (1986) Cratering of planetary satellites, in Satellites, (J.A. Burns and M.S. Matthews eds.) Univ. Arizona Press, Tucson, pp. 492–580.

    Google Scholar 

  • Chapman, C, and 7 co-authors (1996a) Cratering on Ida, Icarus 120, 77–86.

    Article  ADS  Google Scholar 

  • Chapman, C, Veverka. J. , Belton, M., Neukum, G. and Morrison, D. (1996) Cratering on Gaspra, Icarus 120, 231–245.

    Article  ADS  Google Scholar 

  • Croft, S.K. (1985) The scaling of complex craters, Proceedings of 15th Lunar Planet. Sci. Conf., J. Geophys. Res. 90, C828–C842.

    Article  ADS  Google Scholar 

  • Davis, D.R., Ryan, E.V. and Farinella, P. (1994) Asteroid collisional evolution: results from current scaling algorithm, Planet. Space. Sci. 43, 599–610.

    Article  ADS  Google Scholar 

  • Davis, D., Weidenshilling, S.J., Farinella, P., Paolicchi, P. and Binzel, R.P. (1989) Asteroid collisional history: Effects on sizes and spins, in Asteroids II, (R. Binzel, T. Gehrels, and M.S. Matthews eds.), Univ. Arizona Press, Tucson, pp. 805–826.

    Google Scholar 

  • Davis, D.R., Chapman, C.R., Weidenschilling, S.J. and Greenberg, R. (1985) Collisional history of asteroids: Evidence from Vesta and the Hirayama families, Icarus 62, 30–35.

    Article  ADS  Google Scholar 

  • Dohnanyi, J.W. (1969) Collisional model of asteroids and their debris, J. Geophys. Res. 74, 2531–2554.

    Article  ADS  Google Scholar 

  • Durda, D., Greenberg, R. and Jedicke, R. (1998) Collisional models and scaling laws: A new interpretation of the shape of the Main-belt asteroid distribution, Icarus 135, 431–440.

    Article  ADS  Google Scholar 

  • Gault, D.E. and Wedekind, J.A. (1978) Experimental studies of oblique impact, in Proc. Lunar Planet. Set. Conf. 9th, Pergamon Press, N.Y., pp. 3843–3875.

    Google Scholar 

  • Gradie, J.C., Chapman, C.R. and Tedesco, E.W. (1989) Distribution of taxonomic classes and the compositional structure of the asteroid belt, in Asteroids II, (Binzel R.P., Gehrels T., and Matthews, M.S. eds.), Univ. Arizona Press, Tucson, pp. 316–335.

    Google Scholar 

  • Grieve, R.A.F. and Shoemaker E.M. (1994) The record of the past impacts on Earth, in Hazards due to Comets and Asteroids, (T. Gehrels, Ed.) Univ. Arizona Press, Tucson, pp. 417–462.

    Google Scholar 

  • Hartmann, W.K. (1977) Relative crater production rates on planets, Icarus 31, 260–276.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1984) Does crater “saturation equilibrium” occur in the Solar System?, Icarus 60, 56–74.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1995) Planetary cratering I: Lunar highlands and tests of hypotheses on crater populations, Meteoritics 30, 451–467.

    Article  ADS  Google Scholar 

  • Hartmann, W.K., Berman, D., Esquerdo, G.A. and McEwen, A. (1999a) Recent Martian volcanism: New evidence from Mars Global Surveyor (abstract), LPSC XXX, CD-ROM edition, No. 1270.

    Google Scholar 

  • Hartmann, W.K., Malin, M.M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P. and Veverka, J. (1999b) Evidence for recent volcanism on Mars from crater counts, Nature 397, 586–589.

    Article  ADS  Google Scholar 

  • Holsapple, K.A. (1993) The scaling of impact processes in planetary sciences, Ann. Rev. Earth.Planet. Sci. 21, 333–373.

    Article  ADS  Google Scholar 

  • Holsapple, K.A. and Schmidt, R.M. (1979) A material-strength model for apparent crater volume Proc. Lunar Planet. Sci. Conf. 10th, pp. 2757–2777.

    Google Scholar 

  • Housen, K.R., Schmidt, R.M. and Holsapple, K.A. (1983) Crater ejecta scaling laws: Fundamental forms based on dimensional analysis, J. Geophys. Res. 88, 2485–2499.

    Article  ADS  Google Scholar 

  • Ivanov, B.A. (1979) Simple model of cratering, Meteoritika no. 38, pp. 68–85, in Russian.

    ADS  Google Scholar 

  • Ivanov, B.A. (1981) Cratering mechanics, in Advances in Science and Technology of VINITI, Ser. Mechanics of Deformable Solids 14, VINITI Press, Moscow, pp. 60- 128,in Russian - see also English translation: NASA Tech. Memorandum 88477/N87-15662, 1986.

    Google Scholar 

  • Ivanov, B.A. and Kostuchenko, V.N (1997) Block oscillation model for impact crater collapse, Lunar and Planetary Science Conference 28th, CD-ROM, abstract no. 1655.

    Google Scholar 

  • Ivanov, B.A., Neukum, G. and Wagner, R. (1999) Impact craters, NEA, and main belt asteroids: Size-frequency Distribution, Lunar and Planetary Science Conference 30, CD-ROM edition, abstract no. 1583.

    Google Scholar 

  • Ivanov, B.A., Basilevsky, A.T. and Neukum, G. (1997) Atmospheric entry of large me- teoroids: Implication to Titan, Planet. Space Sci. 45, 993–1007.

    Article  ADS  Google Scholar 

  • Jedicke, R. and Metcalfe, T.S. (1998) The orbital absolute magnitude distributions of Main Belt asteroids, Icarus 131, 245–260.

    Article  ADS  Google Scholar 

  • Love, S. and Ahrens, T.J. (1996) Catastrophic impacts on gravity dominated asteroids, Icarus 124, 141–155.

    Article  ADS  Google Scholar 

  • McCrosky, R., Chao, K. and Posen, A. (1979). Data on bolides of Prairie Network, Meteoritika no. 37, Nauka Press, Moscow, pp. 44–59 (in Russian).

    Google Scholar 

  • McEwen, A.S., Gaddis, L.R., Neukum, G., Hoffman, H., Pieters, C.M. and Head, J.W. (1993) Galileo observations of post-Imbrium lunar craters during the first Earth-Moon flyby, J. Geophys. Res. 98 no. E9, 17,207–17,231.

    Article  Google Scholar 

  • McEwen, A.S., Moore, J.M. and Shoemaker, E.M. (1997) The Phanerozoic impact cra- tering rate: Evidence from the farside of the Moon, J. Geophys. Res. 102, 9231–9242.

    Article  ADS  Google Scholar 

  • McKinnon, W.B. (1978) An investigation into the role of plastic failure in crater modification, in Proc. Lunar Planet. Sci. Conf. 9th, Pergamon Press, NY, pp. 3965–3973.

    Google Scholar 

  • Melosh, H. J. (1977) Crater modification by gravity: A mechanical analysis of slumping, in Impact and Explosion Cratering, Pergamon Press, NY, pp. 1245–1260.

    Google Scholar 

  • Melosh, H.J. (1979) Acoustic fluidization: a new geologic process?, J. Geophys. Res. 84, 7513–7520.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1982) A schematic model of crater modification by gravity, J. Geophys. Res. 87, 371–380.

    Article  ADS  Google Scholar 

  • Melosh, H.J.(1989) Impact Cratering: A Geologic Process, Oxford University Press, N.Y. & Clarendon Press, Oxford, 245 pp.

    Google Scholar 

  • Melosh, H.J. and Ivanov, B.A. (1999) Impact crater collapse, Annu. Rev. Earth Planet. Sci. 27, 385–415

    Article  ADS  Google Scholar 

  • Melosh, H.J. and Ryan, E.V. (1997) Note: Asteroids shattered but not dispersed, Icarus 129,562–564.

    Article  ADS  Google Scholar 

  • Milani, A., Carpino, M., Hahn, G. and Nobili, A.M. (1989) Dynamics of planet-crossing asteroids: Classes of orbital behavior, Icarus 78, 212–269.

    Article  ADS  Google Scholar 

  • Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub’, A.P., Popova, O.P., Shuvalov,V.V., Spalding, R.E., Jacobs, C. and Tagliaferri, E. (1997) Assessement of kinetic energy of meteoroids detected by satellite-based light sensors, Icarus 130, 259–274.

    Article  ADS  Google Scholar 

  • Neukum, G. (1983) Meteoritenbombardement and Datierung Planetarer Oberflächen, Habilitation dissertation for faculty membership, Univ. of Munich, 186 pp.

    Google Scholar 

  • Neukum, G., and Ivanov, B.A. (1994) Crater size distribution and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards due to Comets and Asteroids, (T. Gehrels, Ed.), Univ. Arizona Press, Tucson, pp. 359–416.

    Google Scholar 

  • Nolan, M.C., Asphaug E., Melosh, H.J. and Greenberg, R. (1996) Impact craters on asteroids: Does gravity or strength control their size?, Icarus 124, 359–371.

    Article  ADS  Google Scholar 

  • Pierazzo, E., Vickery, A.M. and Melosh, H.J. (1997) A reevaluation of impact melt production, Icarus 127, 408–423.

    Article  ADS  Google Scholar 

  • Pike, R. (1977) Size-dependence in the shape of fresh impact craters on the moon, in Impact and Explosion Cratering, (Eds. Roddy D.J., Pepin R.O., and Merrill R.B.),Pergamon Press, N.Y., pp. 489–510.

    Google Scholar 

  • Pike, R. J. (1980) Control of crater morphology by gravity and target type: Mars, Earth,moon, in Proc. Lunar. Planet Sci. Conf 11th, Pergamon Press, N.Y., pp. 2159–2189.

    Google Scholar 

  • Pike, R.J. and Davis, P.A. (1984) Toward a topographic model of Martian craters from photoclinometry (abstract), Lunar and Planetary Science XV, pp. 645–646.

    Google Scholar 

  • Rabinowitz, D. (1993) The size-distribution of the Earth-approaching asteroids, Astro- phys. J. 407, 412–427.

    Article  ADS  Google Scholar 

  • Rabinowitz, D., Bowell, E., Shoemaker, E. and Muinonen, K. (1994) The population of Earth-crossing asteroids, in Hazards due to Comets and Asteroids, (Ed. T. Gehrels), University of Arizona Press, Tucson, pp. 285–312.

    Google Scholar 

  • Rabinowitz, D.L.(1997) Are main-belt asteroids a sufficient source for the Earth-approaching asteroids? Part II. Predicted vs observed size distribution, Icarus 130, 287–295.

    Article  ADS  Google Scholar 

  • Roddy, D.J. (1978) Pre-impact geologic conditions, physical properties, energy calculations, meteorite and initial crater dimensions and orientation of joints, faults, and walls at Meteor Crater, Arizona, Proc. Lunar. Sci. Conf. 9th, Pergamon Press, NY, pp. 3891–3930.

    Google Scholar 

  • Roddy, D.J., Pepin, R.O. and Merrill, R.B., eds. (1977) Impact and Explosion cratering. Pergamon Press, N.Y. 1301 pp.

    Google Scholar 

  • Ronca, L.B., Basilevsky, A.T., Kryuchkov, V.P. and Ivanov, B.A. (1981). Lunar craters evolution and meteoroidal flux in pre-mare and post-mare times, The Moon and the Planets 245, 209–229.

    Article  ADS  Google Scholar 

  • Schmidt, R.M. and Housen, K.R. (1987) Some Recent Advances in the Scaling of Impact and Explosion Cratering, Int. J. Impact Engng. 5, 543–560.

    Article  ADS  Google Scholar 

  • Schmidt, R.M. (1980) Meteor Crater: Energy of formation-implications of centrifuge scaling, in Proc. Lunar Planet. Sci. Conf. 11th, pp. 2099–2128.

    Google Scholar 

  • Shoemaker, E.M. and Wolfe, R. (1982) Cratering time scales for the Galilean satellites, in Satellites of Jupiter, (Ed. D. Morrison), Univ. of Arizona Press, Tucson, pp. 277–339.

    Google Scholar 

  • Shoemaker, E.M. (1977) Astronomically observable crater-forming projectiles, in Impact and Explosion Cratering, (Eds. D.J. Roddy, R.O. Pepin, and R.B. Merrill), Pergamon Press, New York, pp. 639–656.

    Google Scholar 

  • Strom, R. (1977) Origin and relative age of lunar and mercurian inter-crater plains, Phys. Earth Planet. Interiors 15, 156–172

    Article  ADS  Google Scholar 

  • Strom, R.G. and Neukum, G. (1988) The cratering record on Mercury and the origin of impacting objects, in Mercury, (Vilas, F., Chapman, C.R. and Matthews, M.S., eds.), Univ. of Arizona Press, Tucson, pp. 336–373.

    Google Scholar 

  • van Houten, C.J., van Houten-Groeneveld, I., Herget, P. and Gehrels, T. (1970) The Palomar-Leiden survey of faint minor planets, Astron. Astrophys. Suppl. 2, 339–448.

    Google Scholar 

  • Veverka, J. and 16 co-authors (1997) NEAR’s flyby of 253 Mathilde: Images of a C asteroid, Science 278, 2109–2114.

    Article  ADS  Google Scholar 

  • Wagner, R. and Neukum, G. (1999) Impact crater count on Mathilde, Abstracts presented to the EGS XXIV General Assembly, The Hague, 1999, 185.

    Google Scholar 

  • Yeomans, D.K. and 12 co-authors (1997) Estimating the mass of asteroid 253 Mathilde from tracing data during the NEAR flyby, Science 278, 2106–2109.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ivanov, B.A., Neukum, G., Wagner, R. (2001). Size-Frequency Distributions of Planetary Impact Craters and Asteroids. In: Marov, M.Y., Rickman, H. (eds) Collisional Processes in the Solar System. Astrophysics and Space Science Library, vol 261. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0712-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0712-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3832-4

  • Online ISBN: 978-94-010-0712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics