Advertisement

Geometrical Structures on Noncommutative Spaces

  • Olivier Grandjean
Part of the Mathematical Physics Studies book series (MPST, volume 23)

Abstract

We review the connection between supersymmetric quantum mechanics and differential geometry. This gives a formulation of differential geometry that is well suited for generalization to the noncommutative setting. Two examples are presented. First, we show how the quantum target of the Wess-Zumino-Witten model on SU(2) can be encoded into ’N = 1 spectral data’. Then, we explain how the Kähler structure on the noncommutative two-torus can be constructed starting with N = 1 spectral data.

Mathematics Subject Classification (2000)

81T40 81T70 81T75 

Key words

noncommutative geometry differential geometry Wess-Zumino-Witten model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alvarez-Gaumé, L., Freedman, D. Z., Geometrical Structure and Ultraviolet Finiteness in the Supersymmetric σ-Model, Commun. Math. Phys. 80,(1981)443–451.ADSCrossRefGoogle Scholar
  2. [2]
    Bratteli, O., and Robinson, D.W., Operator Algebras and Quantum Statistical Mechanics 1, 2nd ed. New York, Berlin, Heidelberg, London, Paris, Tokyo: Springer Verlag, 1987.MATHGoogle Scholar
  3. [3]
    Cattaneo, A.S., Felder, G., A Path Integral Approach to the Kontsevich Quantization Formula, math. QA/9902090, 1999.Google Scholar
  4. [4]
    Chamseddine, A.H., Fröhlich, J., Some Elements of Connes’ Non-Commutative Geometry, and Space-Time Geometry, In: Chen Ning Yang, a great physicist of the twentieth century, C. S. Liu and S.-T. Yau (eds.), Cambridge, MA: International Press (1995), 10–34.Google Scholar
  5. [5]
    Connes, A., Noncommutative Geometry, London, New York: Academic Press, 1994.MATHGoogle Scholar
  6. [6]
    Connes, A., Noncommutative Geometry and Reality, J. Math. Phys. 36 (1995), 6194–6231.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Connes, A., Gravity Coupled with Matter and Foundation of Noncommutative Geometry, Commun. Math. Phys. 186 (1996), 731–750.MathSciNetADSGoogle Scholar
  8. [8]
    Connes, A., Douglas, M.R., Schwarz, A., Noncommutative Geometry and Matrix Theory: Compactification on Tori, JHEP 9802:003, 1998.Google Scholar
  9. [9]
    Di Vecchia P., Knizhnik, V.G., Petersen, J.L., Rossi, P., A Supersymmetric Wess-Zumino Lagrangian in Two Dimensions, Nucl. Phys. B253 (1985), 701–726.ADSCrossRefGoogle Scholar
  10. [10]
    Doplicher, S., Fredenhagen, K., Roberts, J.E., The Quantum Structure of Space-Time at the Planck Scale and Quantum Fields, Commun. Math. Phys. 172 (1995), 187–220.MathSciNetADSMATHCrossRefGoogle Scholar
  11. [11]
    Felder, G., Gawȩdzki, K., Kupiainen, A., The Spectrum of Wess-Zumino-Witten Models, Nucl. Phys. B299 (1988), 355–366.ADSCrossRefGoogle Scholar
  12. [12]
    Felder, G., Gawȩdzki, K., Kupiainen, A., Spectra of Wess-Zumino-Witten Models with Arbitrary Simple Groups, Commun. Math. Phys. 117 (1988), 127–158.ADSMATHCrossRefGoogle Scholar
  13. [13]
    Frohlich, J., The Non-Commutative Geometry of Two-Dimensional Supersymmetric Conformai Field Theory, In: PASCOS, Proc. of the Fourth Intl. Symp. on Particles, Strings, and Cosmology. K.C. Wali (ed.), Singapore: World Scientific 1995.Google Scholar
  14. [14]
    Frohlich, J., Gawȩdzki, K., Conformai Field Theory and the Geometry of Strings, CRM Proceedings and Lecture Notes, Vol.7 (1994), 57–97.Google Scholar
  15. [15]
    Frohlich, J., Grandjean, O., Recknagel, A., Supersymmetric Quantum Theory and Differential Geometry, Commun. Math. Phys. 193 (1998), 527–594.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Frohlich, J., Grandjean, O., Recknagel, A., Supersymmetric Quantum Theory and Non-Commutative Geometry, Commun. Math. Phys. 203 (1999), 119–184.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Fuchs, J., More on the Super WZW Theory, Nucl. Phys. B318 (1989), 631–654.ADSCrossRefGoogle Scholar
  18. [18]
    Grandjean, O., Non-Commutative Differential Geometry, Ph.D. Thesis, ETH Zürich, 1997.Google Scholar
  19. [19]
    Kontsevich, M., Deformation Quantization of Poisson Manifolds, q-alg/9709040, 1997.Google Scholar
  20. [20]
    Polchinski, J., Dirichlet Branes and Ramond-Ramond Charges, Phys. Rev. Lett. 75 (1995), 4724–4727.MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    Rennie, A., Commutative Geometries are Spin Manifolds, math-ph/9903021, 1999.Google Scholar
  22. [22]
    Schomerus, V., D-Branes and Deformation Quantization, JHEP 9906:030, 1999.Google Scholar
  23. [23]
    Seiberg, N., Witten, E., String Theory and Noncommutative Geometry, hep-th/9908142,1999.Google Scholar
  24. [24]
    Witten, E., Non-Abelian Bosonization in Two Dimensions, Commun. Math. Phys. 92 (1984), 455–472.MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    Zamolodchikov, A.B., Fateev, V.A., Operator Algebra and Correlation Functions in the Two-Dimensional Wess-Zumino SU(2)xSU(2) Chiral Model, Sov. J. Nucl. Phys. 43 (1986), 657–664.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Olivier Grandjean
    • 1
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations