Skip to main content

Quasicrystalline Materials. Structure and Mechanical Properties

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 16))

Abstract

A brief description of the structure of quasicrystalline materials, their behavior under mechanical load and the mechanism of their high-temperature plastic deformation on the base of literary data are given. Original data about the investigation of the deformation of AlCuFe quasicrystal by a complex of micro- and nanoindentation techniques in a wide temperature interval are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois, J.M. (1998) Introduction to Quasicrystals, Springer Verlag, Berlin, 392 p..

    Google Scholar 

  2. Takeuchi, S. (1994) Physical properties of quasicrystals—an experimental review, Mater. Sei. Forum 150&151, 35–52.

    Article  Google Scholar 

  3. Feuerbacher, M., Metzmacher, C., Wollgarten, M., Urban, K., Baufeld, B., Bartsch, M., and Messerschmidt, U. (1997) The plasticity of icosahedral quasicrystals, Mater. Sei. and Eng. A233,103–110.

    Article  CAS  Google Scholar 

  4. Dong, C., Perrot, A., Dubois, J.-M., and Belin, E. (1994) Hume-Rothery phases with constant e/a value and their related electronic properties in Al-Cu-Fe-(Cr) quasicrystalline systems, Mater. Set. Forum 150&151, 403–416.

    Article  Google Scholar 

  5. Kimura, K., Matsuda, H., Tamura, R., Fujimori, M., Schmechel, R., and Werheit, H. (1995) Interrelation between icosahedral aluminum-based quasicrystal and boron-rich solids, in Ch. Janot and R. Mosseri (eds), Proc. of the 5th Internat Conf. on Quasicrystals, Avignon, 22-26 May 1995, World Scientific, Singapore, pp. 730–738.

    Google Scholar 

  6. Katz, A., and Gratias, D., Chemical order and local configurations in AlCuFe-type icosahedral phase, ibid.,pp. 164–167.

    Google Scholar 

  7. Urban, K., Ebert, Ph, Feuerbacher, M., Franz, V., Wollgarten, M., Bartsch, M., Baufeld, B., and Messerschmidt, U. (1997) Mechanical properties of quasicrystals, in S. Takeuchi and T. Fujiwara (eds), Proc. of the 6th Internat. Conf. on Quasicrystals, Tokyo, Japan, 26-30 May 1997, World Scientific, Singapore, p.p. 493–500.

    Google Scholar 

  8. Quasicrystals (1999), J.-M. Dubois, P.A Thiel, A.-P. Tsai, and K. Urban (eds), Proc. of 1998 MRS Fall Meeting, Boston, MA,, 553 p.

    Google Scholar 

  9. Wolf, B., and Paufler, P. (1999) Mechanical properties of quasicrystals investigated by indentation and scanning probe microscopes, Surface and Interface Analysis 27, 592–599.

    Article  CAS  Google Scholar 

  10. Bresson. L., and Gratias, D. (1993) Plastic deformation in AlCuFe icoahedral phase, J. Non-Cryst. Solids 153&154, 468–472.

    Article  Google Scholar 

  11. Shield, J.E., Kramer, M.J., and McCallum, R.W. (1994) Plastic deformation in icosahedral AlPdMn alloys, J. Mater. Research 9, 343–347.

    Article  CAS  Google Scholar 

  12. Köster, U., Ma, X.L., Greiser, J., and Liebertz, H. (1997) Plastic deformation of AlCuFe quasicrystals, in Ch. Janot and R. Mosseri (eds), Proc. of the 6th Internat. Conf on Quasicrystals, Tokyo, Japan, 26-30May 1997, World Scientific, Singapore, p.p. 505–508.

    Google Scholar 

  13. Köster, U., Liu, W., Liebertz, H., and Michel, M. (1993) Mechanical properties of quasicrystalline and crystalline phases in Al-Cu-Fe alloys (1993) J. Non-Cryst. Solids 153&154, 446–452.

    Article  Google Scholar 

  14. Trefilov, V.l., Milman, Yu.V., Lotsko, D.V., Belous, A.N., Chugunova, S.I., Timofeeva, I.I., and Bykov, A.I. (2000) Study of mechanical properties of quasicrystalline Al-Cu-Fe phase by indentation tecnique, Reports of Russian Academy of Sciences, in press.

    Google Scholar 

  15. Belous, A.N., Milman, Yu.V., Lotsko, D.V., Chugunova, S.I., Ivashchenko, R.K., Bykov A.I., Timofeeva, I.I., and Rupchev V.L. (1998) Investigation by indentation technique of mechanical properties of a quasicrystalline compact of Al-Cu-Fe system manufactured by hot pressing, in S.A. Firstov (ed), Electron Microscopy and Strength of Materials, IPMS of NASU, Kyiv, 9, 189–212.

    Google Scholar 

  16. Milman, Yu.V., Lotsko, D.V., Belous, A.N. (1999) Mechanical properties of quasicrystalline materials, in V.I. Betekhtin, S.P. Beliayev, Yu.M. Dal, Z.P. Kamentseva, A.I. Slutsker (eds.) Deformation and Fracture Mechanisms of Advanced Materials, Proc. of the XXXV SeminarActual Problems of Strength”, 15-18 September 1999, Pskov, p.p. 463–470.

    Google Scholar 

  17. Hornbogen, E., and Shandl, M. (1992) Probing mechanical properties of quasicrystalline aluminum alloys, Zs. Metallkunde 83, 128–131.

    CAS  Google Scholar 

  18. Von Stebut, J., Strobel, C., and Dubois, J.M. (1997) Friction response and brittleness of polycrystalline AlCuFe icosahedral quasicrystals, in Ch. Janot and R. Mosseri (eds), Proc. of the 5th Internat Conf on Quasicrystals, Avignon, 22-26 May 1995, World Scientific, p.p. 704–713.

    Google Scholar 

  19. Kang, S.S., and Dubois, J.M. (1992) Compression testing of quasicrystalline materials, Phil. Mag A 66, 151–163.

    Article  CAS  Google Scholar 

  20. Yan, Y., Baluc, N., Peyronneau, J., and Kleman, M. (1995) Pressure-induced transformations in icosahedral AlPdMn, in Ch. Janot and R. Mosseri (eds), Proc. of the 5th Internat Conf. on Quasicrystals, Avignon, 22-26May 1995, World Scientific, Singapore, p.p. 668–671.

    Google Scholar 

  21. Milman, Yu.V., Galanov, B.A., and Chugunova, S.I. (1993) Plasticity characteristic obtained through hardness measurement, Overview No. 107, Acta metall. mater. 41, 2523–2532.

    Article  CAS  Google Scholar 

  22. Milman, Yu.V. (1999) New methods of micromechanical testing of materials by local loading with a rigid indenter, in LK. Pokhodnia (ed.) Advanced Materials Science: 21 st Century, Cambridge International Science Publishing, Cambridge, p.p. 638–659.

    Google Scholar 

  23. Milman, Yu.V., Chugunova, S.I., Goncharova I.V., Chudoba, T., Lojkowski, W., and Gooch, W. (1999) Temperature dependence of hardness in silicon—carbide ceramics with different porosity, Refractory Metals &Hard Materials 17, 361–368.

    Article  CAS  Google Scholar 

  24. Sordelet, DJ., Besser, M.F., and Anderson, I.E. (1996) Particle size effects on chemistry and structure of Al-Cu-Fe quasicrystalline coatings, J. Thermal Spray Technology 5(2), 161–174.

    Article  CAS  Google Scholar 

  25. Gridneva, I.V., Milman, Yu.V., and Trefilov, V.I. (1972) Phase transition in diamond-structure crystals during hardness measurements, Phys. stat. sol. (a) 14, 177–182.

    Article  CAS  Google Scholar 

  26. Novikov, N.V., Dub, S.N., Milman, Yu.V., Gridneva, I.V., and Chugunova, S.I. (1996) Application of nanoindentation method to study a semiconductor-metal phase transformation in silicon, J. of Superhard Materials 18, 32–40.

    Google Scholar 

  27. Suzuki, T. and Ohmura, T. (1996) Ultra-microindentation of silicon at elevated temperatures, Phil. Mag. A 74, 1073–1084.

    Article  CAS  Google Scholar 

  28. Trefilov, V.I., Milman, Yu.V., and Gridneva, I.V. (1984) Characteristic temperature of deformation in crystalline materials, Crystal Res. Technol. 19, 413–421.

    Article  CAS  Google Scholar 

  29. Tanaka, V. (1987) Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. of Mater. Science 22, 1501.

    Article  Google Scholar 

  30. Wolf, B. and Paufler, P. (1999) Mechanical Properties of quasicrystals studied by scanning probe mocroscopy, European Microscopy and Analysis, 62, 21–23.

    Google Scholar 

  31. Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R. (1992) Electrical resistance of metallic contacts on silicon and germanium during indentation, J. Mater. Res. 7,961–972.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Milman, Y.V., Lotsko, D.V., Bilous, A.M., Dub, S.M. (2001). Quasicrystalline Materials. Structure and Mechanical Properties. In: Baraton, MI., Uvarova, I. (eds) Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology. NATO Science Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0702-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0702-3_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6925-7

  • Online ISBN: 978-94-010-0702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics