Skip to main content

Topical Problems in the Theory of Technological Processes for the Nanostructured Materials Preparation

  • Chapter
Book cover Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology

Part of the book series: NATO Science Series ((NAII,volume 16))

  • 252 Accesses

Abstract

In the great diversity of technological processes suitable for manufacturing of nanostructured materials, the technology of small particles plays the most important role. This technology is close to conventional powder metallurgy (including the technology of high-temperature oxide and non-oxide ceramics), however when nanosized particles are used they exert a great effect on the main consistencies in the evolution of a disperse system on a way from the ensemble of free particles to the monolithic nanostructured material [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skorokhod, V.V., Ragulya, A.V., (1998) Features of nanocrystalline structure formation on sintering of ultrafine powders, in G.-M. Chow and N.I. Noskova (eds), Nanostructured Materials. Science and Technology, NATO ASI Ser. 3. High Technology, Kluwer Academic Publishers, Dordrecht, Boston, London, 50, pp. 378–404.

    Google Scholar 

  2. Rak, Z.S. (1999) New trends in powder injection molding, Powder Metallurgy, No. 3/4, 16–23.

    Google Scholar 

  3. Hare, T.M. (1979) Statistics of earlier sintering and rearrangement by computer simulation, in G.C. Kuczynski (ed.), Sintering Processes. Materials Science Research, Plenum Press, New York, pp. 77–88.

    Google Scholar 

  4. Kovaltchenko, M.S., Nikolenko, A.M. (1994) Statistical Analysis of Structure Features in Powder Composites in Terms of Random Particles Packing, in Congress Mondial de Metallurgie de Poudres, Les Editions de Physique, Paris, 3, pp. 2295–2298.

    Google Scholar 

  5. Kartuzov, V.V., Kartuzov, E.V., Krassikov, I.V. (1999) Computer generation of two-and three dimensional packing as a background for numerical modeling of sintering processes, Science of Sintering 31, No. 3, pp. 157–162.

    CAS  Google Scholar 

  6. Nurkanov, E.Yu., Kadushnikov, R.M., Kamenin, LG., Alievski, V.M., Alievski, D.M., Kartashev, V.V. (2000) Study of density properties of three-dimensional random packing of spherical particles using computer modeling, Powder Metallurgy, in print.

    Google Scholar 

  7. Handwerker, C.A., Blendell, J.E., and Coble, R.L. (1989) Sintering of Ceramics, in D.P. Uskokovic, H. Palmour III., R.M. Spriggs (eds.), Science of Sintering. New Direction for Materials Processing and Microstructural Control, Plenum Press, New York, London, pp. 3–24.

    Google Scholar 

  8. Skorokhod, V.V., Solonin, Yu.V., and Uvarova, I.V. (1990) Chemical, Diffusion and Rheological Processes in Powder Materials Technology [in Russian], Naukova. Dumka, Kiev.

    Google Scholar 

  9. German, R.M. (1978) Sintering Parameter for Sub-micron Powders, Science of Sintering 10, No. 1, 11–25.

    CAS  Google Scholar 

  10. Skorokhod, V.V. (1987) Surface relaxation, dynamics of geometrical structure and macro-kinetics of densification during sintering of ultrafine powders, in G.C. Kuczynski, D.P. Uskokovic, H. Palmour III, and M.M. Ristic (eds.), Sintering’85, Plenum Press, New York, London, pp. 81–88.

    Chapter  Google Scholar 

  11. Ashby, M.F., and Verrall, R. (1973) Non-uniform viscous flow of polycrystalline bodies and superplasticity, Acta Metall., 21, No. 2, 53–61.

    Google Scholar 

  12. Exner, H.E. (1979) Principles of single phase sintering, Rev.of Powder Metallurgy and Physical Ceramics 1, Nos. 1-4, 7–251

    Google Scholar 

  13. Skorokhod, V.V., Panichkina, V.V., Ragulya, A.V. (1999) Effect of size distribution and heating rate on initial and intermediate sintering stages, Functional Materials, 6, No. 2, 215–220.

    Google Scholar 

  14. Skorokhod, V.V. (1999) Rapid Rate Sintering of Disperse Systems: Theory, Processing and Problems, Powder Metallurgy and Metal Ceramics 38, No 7-8, 350.

    Article  CAS  Google Scholar 

  15. Kadushnikov, R.M., Skorokhod, V.V. (1991) Research of the zonal separation during sintering of powder bodies by computer modeling methods [in Russian], Poroshk. Metall, No.7, 31–37.

    Google Scholar 

  16. Kadushnikov, R.M., Skorokhod, V.V., Kamenin, I.G., Alievski V.M., Nurkanov, E.Yu., Alievski, D.M. (2000) Three dimension modeling of sintering of spherical particles, Powder Metallurgy, in print

    Google Scholar 

  17. Ragulya, A.V., Skorokhod, V.V. (1997) Validity of Rate Controlled Sintering Method for Consolidation of Dense Nanocrystalline Materials, Proc. of the 14-th Plansee Seminar 2, pp. 735–744.

    Google Scholar 

  18. Palmour III, H. (1989) Rate controlled sintering of ceramics and selected powder materials, in D.P. Uskokovic, H. Palmour III., R.M. Spriggs (eds.), Science of Sintering. New Direction for Materials Processing and Microstructural Control, Plenum Press, New York, London, pp. 337–356.

    Google Scholar 

  19. Mayo, M.J. (1996) Processing of nanocrystalline ceramics from ultrafine particles, Int. Materials Reviews 41, No. 3, 85–115.

    Article  CAS  Google Scholar 

  20. Andrievski, R.A. (2000) New Superhard Materials Based on Nanostructured High-Melting Compounds: Achievements and Perspectives, in M.-I. Baraton (ed.), Functional Gradient Materials and Surface Layers Prepared by Fine Particle Technology, NATO ASI Ser. 3. High Technology, Kluwer Academic Publishers, Dordrecht, Boston, London, present issue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skorokhod, V.V. (2001). Topical Problems in the Theory of Technological Processes for the Nanostructured Materials Preparation. In: Baraton, MI., Uvarova, I. (eds) Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology. NATO Science Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0702-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0702-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6925-7

  • Online ISBN: 978-94-010-0702-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics