Skip to main content

Asymptotic analysis of the steady-state and time-dependent Berman problem

  • Chapter
Practical Asymptotics
  • 258 Accesses

Abstract

The Berman problem for two-dimensional flow of a viscous fluid through an infinite channel is studied. Fluid motion is driven by uniform suction (or injection) of fluid through the upper channel wall, and is characterised by a Reynolds number R; the lower wall is impermeable. A similarity solution in which the streamfunction takes the form ψ = −xF(y, t) is examined, where x and y are coordinates parallel to and normal to the channel walls, respectively. The function F satisfies the Riabouchinsky-Proudman-Johnson equation, a partial differential equation in y and t; steady flows satisfy an ordinary differential equation in y. The steady states are computed numerically and the asymptotics of these solutions described in the limits of small wall suction or injection, large wall injection and large wall suction, the last of these being given more concisely and more accurately than in previous treatments. In the time-dependent problem, the solution appears to be attracted to a limit cycle when R ≫ 1 (large wall suction). This solution has been computed numerically for ε = 1/R down to 0·011, but the structure of the solution makes further numerical progress currently infeasible. The limit cycle consists of several phases, some with slow and others with very rapid evolution. During one of the rapid phases, the solution achieves a large amplitude, and this feature of the solution lies behind the practical difficulties encountered in numerical simulations. The profile of the solution is plotted during the various phases and corresponding asymptotic descriptions are given. An exact solution to the Riabouchinsky-Proudman-Johnson equation covers most of the phases, although separate discussion is required of the boundary layers near the two walls and an interior layer near a zero of F. Particular consideration is required when this zero approaches the upper channel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Riabouchinsky, Quelques considérations sur les mouvements plans rotationnels d’un liquide. C. R. Hebd. Acad. Sci. 179 (1924) 1133–1136.

    MATH  Google Scholar 

  2. I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point. J. Fluid Mech. 12 (1962) 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J. 326 (1911) 321–324, 344–348, 357–362, 372–376, 391–393, 407–410.

    Google Scholar 

  4. A. S. Berman, Laminar flow in channels with porous walls. J. Appl. Phys. 24 (1953) 1232–1235.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. M. Terrill, On some exponentially small terms arising in flow through a porous pipe. Quart. J. Mech. Appi Math. 26 (1973) 347–354.

    Article  MATH  Google Scholar 

  6. R. E. Grundy and H. R. Allen, The asymptotic solution of a family of boundary value problems involving exponentially small terms. IMA J. Appl. Math. 53 (1994) 151–168.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. M. Cox and A. C. King, On the asymptotic solution of a high order non-linear ordinary differential equation. Proc. R. Soc. London A 453 (1997) 711–728.

    MathSciNet  Google Scholar 

  8. R. M. Terrill, Laminar flow in a uniformly porous channel. Aeronaut. Quart. 15 (1964) 299–310.

    MathSciNet  Google Scholar 

  9. M. B. Zaturska, P. G. Drazin and W. H. H. Banks, On the flow of a viscous fluid driven along a channel by suction at porous walls. Fluid Dyn. Res. 4 (1988) 151–178.

    Article  Google Scholar 

  10. I. Proudman, An example of steady laminar flow at large Reynolds number. J. Fluid Mech. 9 (1960) 593–602.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. M. Terrill and G. M. Shrestha, Laminar flow through parallel and uniformly porous walls of different permeability. ZAMP 16 (1965) 470–482.

    Article  MathSciNet  Google Scholar 

  12. R. M. Terrill and G. M. Shrestha, Laminar flow through a channel with uniformly porous walls of different permeability. Appl. Sci. Res. 15 (1966) 440–468.

    Article  Google Scholar 

  13. R. M. Terrill, Flow through a porous annulus. Appl. Sci. Res. 17 (1967) 204–222.

    Article  MATH  Google Scholar 

  14. G. M. Shrestha and R. M. Terrill, Laminar flow with large injection through parallel and uniformly porous walls of different permeability. Quart. J. Mech. Appl. Math. 21 (1968) 413–432.

    Article  MATH  Google Scholar 

  15. S. M. Cox, Two-dimensional flow of a viscous fluid in a channel with porous walls. J. Fluid Mech. 227 (1991) 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. M. Cox, Analysis of steady flow in a channel with one porous wall, or with accelerating walls. SIAM J. Appl. Math. 51 (1991) 429–438.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. E. Grundy and R. McLaughlin, Global blow-up of separable solutions of the vorticity equation. IMA J. Appl. Math. 59 (1997) 287–307.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. M. Skalak and C.-Y. Wang, On the nonunique solutions of laminar flow through a porous tube or channel. SIAM J. Appl. Math. 34 (1978) 535–544.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. M. Terrill, Laminar boundary-layer flow near separation with and without suction. Phil. Trans. R. Soc. London A 253 (1960) 55–100.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. N. Mercer and A. J. Roberts, A centre manifold description of contaminant dispersion in channels with varying flow properties. SIAM J. Appl. Math. 50 (1990) 1547–1565.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Domb and M. F. Sykes, On the susceptibility of a ferromagnetic above the Curie point. Proc. R. Soc. London A 240 (1957) 214–228.

    Article  MATH  Google Scholar 

  22. G. K. Batchelor, An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press (1967) 615pp.

    Google Scholar 

  23. P. G. Drazin and Y. Tourigny, Numerical study of bifurcations by analytic continuation of a function defined by a power series. SIAM J. Appl. Math. 56 (1996) 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM CBMS-MSF Regional Conference Series in Applied Mathematics (1977) 170pp.

    Book  Google Scholar 

  25. V. A. Galaktionov and S. A. Posashkov, New exact solutions of parabolic equations with quadratic non-linearities. USSR Comput. Maths. Math. Phys. 21 (1989) 112–119.

    Article  MathSciNet  Google Scholar 

  26. J. R. King, Mathematical analysis of a model for substitutional diffusion. Proc. R. Soc. London A 430 (1990) 377–404.

    Article  MATH  Google Scholar 

  27. G. I. Barenblatt, Scaling, Self-Similarity and Intermediate Asymptotics. Cambridge University Press (1996) 386pp.

    Google Scholar 

  28. S. J. Chapman, J. R. King and K. L. Adams, Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc. R. Soc. London A 454 (1998) 2733–2755.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Van Dyke, Perturbation Methods in Fluid Mechanics. Stanford: Parabolic Press (1975) 271pp.

    Google Scholar 

  30. J. R. King, ‘Instantaneous source’ solutions to a singular nonlinear diffusion equation. J. Eng. Math. 27 (1993)31–72.

    Article  MATH  Google Scholar 

  31. M. A. Goldshtik and N. I. Javorsky, On the flow between a porous rotating disk and a plane. J. Fluid Mech. 207(1989) 1–28.

    Article  MATH  Google Scholar 

  32. C. L. Taylor, W. H. H. Banks, M. B. Zaturska and P. G. Drazin, Three-dimensional flow in a porous channel. Quart. J. Mech. Appl. Math. 44 (1991) 105–133.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. A. Galaktionov and J. L. Vazquez, Blow-up of solutions with free boundaries for the Navier-Stokes equations. Department of Mathematics Preprint 9824, University of Bath, 1998.

    Google Scholar 

  34. H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28 (1975) 323–331. Corrigendum Commun. Pure Appl. Math. 29 (1976) 553–554.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, J.R., Cox, S.M. (2001). Asymptotic analysis of the steady-state and time-dependent Berman problem. In: Kuiken, H.K. (eds) Practical Asymptotics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0698-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0698-9_7

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3827-0

  • Online ISBN: 978-94-010-0698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics