Skip to main content

Shear flow over a particulate or fibrous plate

  • Chapter
Practical Asymptotics
  • 266 Accesses

Abstract

Simple shear flow over a porous plate consisting of a planar array of particles is studied as a model of flow over a membrane. The main objective is to compute the slip velocity defined with reference to the velocity profile far above the plate, and the drift velocity induced by the shear flow underneath the plate. The difference between these two velocities is shown to be proportional to the thickness of the plate. When the geometry of the particle array is anisotropic, the directions of the slip and drift velocity are generally different from the direction of the overpassing shear flow. An integral formulation is developed to describe flow over a plate consisting of a periodic lattice of particles with arbitrary shape, and integral representations for the velocity and pressure are developed in terms of the doubly-periodic Green’s function of three-dimensional Stokes flow. Based on the integral representation, asymptotic expressions for the slip and drift velocity are derived to describe the limit where the particle size is small compared to the inter-particle separation, and numerical results are presented for spherical and spheroidal particles of arbitrary size. The asymptotic results are found to be accurate over an extended range of particle sizes. To study the limit of small plate porosity, the available solution for shear flow over a plane wall with a circular orifice is used to describe flow over a plate with a homogeneous distribution of circular perforations, and expressions for the slip and drift velocity are derived. Corresponding results are presented for axial and transverse shear now over a periodic array of cylinders arranged distributed in a plane. Streamline pattern illustrations confirm that a negative drift velocity is due to the onset of eddies between closely-spaced particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Lipowsky, The conformation of membranes. Nature 349 (1991) 475–481.

    Article  Google Scholar 

  2. U. Seifert, Configurations of fluid membranes and vesicles. Adv. in Phys. 46 (1997) 13–137.

    Article  Google Scholar 

  3. R. Lipowsky and E. Sackmann (Eds.), Structure and Dynamics of Membranes (Vol I). Amsterdam: Elsevier (1995) 1020 p.

    MATH  Google Scholar 

  4. H. Yasuda, G.E. Lamaze and A. Peterlin, Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J. Polym. Sci. A 2 (1971) 1117–1131.

    Google Scholar 

  5. G. H. Malone, T. E. Hutchinson and S. Prager, Molecular models for permeation through thin membranes: the effect of hydrodynamic interaction on permeability. J. Fluid Mech. 65 (1974) 753–767.

    Article  MATH  Google Scholar 

  6. K. Ishii, Viscous flow past multiple planar arrays of small spheres. J. Phys. Soc. Japan 46 (1979) 675–680.

    Article  Google Scholar 

  7. E. O. Tuck and A. Kouzoubov, A laminar roughness boundary condition. J. Fluid Mech. 300 (1995) 59–70.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Sarkar and A. Prosperetti, Effective boundary conditions for Stokes flow over a rough surface. J. Fluid Mech. 312 (1996) 1–19.

    Article  Google Scholar 

  9. R. E. Larson and J. J. L. Higdon, Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166 (1986) 449–472.

    Article  MATH  Google Scholar 

  10. R. E. Larson and J. J. L. Higdon, Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow. J. Fluid Mech. 178 (1987) 119–136.

    Article  MATH  Google Scholar 

  11. A. S. Sangani and S. Behl, The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces. Phys. Fluids A 1 (1989) 21–37.

    Article  MATH  Google Scholar 

  12. S. H. Smith, Stokes flow past slits and holes. Int. J. Multiphase Flow 13 (1987) 219–231.

    Article  MATH  Google Scholar 

  13. A. M. J. Davis, Shear flow disturbance due to a hole in the plane. Phys. Fluids A3 (1991) 478–480.

    Google Scholar 

  14. Z.-Y. Yan, A. Acrivos and S. Weinbaum, Fluid skimming and particle entrainment into a small circular side pore. J. Fluid Mech. 229 (1991) 1–27.

    Article  MATH  Google Scholar 

  15. W.-Y. Wu, S. Weinbaum and A. Acrivos, Shear flow over a wall with suction and its application to particle screening. J. Fluid Mech. 243 (1992) 489–518.

    Article  Google Scholar 

  16. G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967), 197–207.

    Article  Google Scholar 

  17. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Cambridge University Press (1992) 25 p.

    Book  MATH  Google Scholar 

  18. C. Pozrikidis, Computation of periodic Green’s functions of Stokes flow. J. Eng. Math. 30 (1996) 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. G. Saffman, On the settling speed of free and fixed suspensions. Stud. Appl. Math. 52 (1973) 115–127.

    MATH  Google Scholar 

  20. C. Pozrikidis, Numerical Computation in Science and Engineering. New York: Oxford University Press, (1998) 62 p.

    MATH  Google Scholar 

  21. C. Pozrikidis, A spectral-element method for particulate Stokes flow. J. Comp. Phys. 156 (1999) 360–381.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. F. Chan, Deflated decomposition of solutions of nearly singular systems. SIAM J. Numer. Anal. 21 (1984) 738–745.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. C. Hansen, Rank-deficient and Discrete Ill-posed Problems. Philadelphia: SIAM (1997) 24 p.

    MATH  Google Scholar 

  24. A. A. Zick and G. M. Homsy, Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115 (1982) 13–26.

    Article  MATH  Google Scholar 

  25. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317–328.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. S. Sangani and A. Acrivos, Slow flow through a periodic array of spheres. Int. J. Multiphase Flow 8 (1982) 343–360.

    Article  MATH  Google Scholar 

  27. J. E. Drummond and M. I. Tahir, Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiphase Flow 10 (1984) 515–540.

    Article  MATH  Google Scholar 

  28. P. G. Saffman, On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50 (1971) 93–101.

    MATH  Google Scholar 

  29. I. D. Howells, Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64 (1974) 449–475.

    Article  MATH  Google Scholar 

  30. A. S. Sangani and C. Yao, Transport processes in random arrays of cylinders. II Viscous flow. Phys. Fluids 31 (1988) 2426–2434.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pozrikidis, C. (2001). Shear flow over a particulate or fibrous plate. In: Kuiken, H.K. (eds) Practical Asymptotics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0698-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0698-9_2

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3827-0

  • Online ISBN: 978-94-010-0698-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics