Skip to main content

The Need for Data from Instrumented Structures for an Optimal Control Approach to the Seismic Interaction between Adjacent Buildings

  • Chapter
Strong Motion Instrumentation for Civil Engineering Structures

Part of the book series: NATO Science Series ((NSSE,volume 373))

  • 421 Accesses

Abstract

The paper deals with an optimal control numerical treatment of the dynamic inequality problem concerning the elastoplastic-fracturing unilateral contact between neighboring structures during earthquakes. The numerical procedure is based on an incremental problem formulation and on a double discretization, in space by the finite element method and in time by the Houbolt method. It is emphasized that the generally nonconvex constitutive contact laws can be simulated numer ically by using data derived from response records of instrumented civil engineering structures. These interface laws are piece-wise linearized, and in each time-step a nonconvex linear complementarity problem is solved with a reduced number of unknowns, Finally, the method is applied to a civil engineering example of adjacent frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Panagiotopoulos, P.O., 1993. Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer-Verlag, Berlin. New York.

    Book  MATH  Google Scholar 

  2. Panagiotopoulos=, P.O., 1985. Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser Verlag, Boston-Basel-Stuttgart.

    Google Scholar 

  3. Panagiotopoulos=, P.O., 1980. Optimal control of unilat eral Structural analysis problems, In: Leipholz, H.H.E, (ed.), Proc. IUTAM Symp. On Structural Control. North-Holland, Amsterdam.

    Google Scholar 

  4. Panagiotopoulos=, P.O., 1984. Optimal control of structures with convex and nonconvex energy densities and variational and hemivar iational inequalities, Eng. Struct., 6, 12–18.

    Google Scholar 

  5. Nitsiotas, G., 1971. Die Berechnung statisch unbestimmter Tragwerke mit einseitigen Bindungen. Ingenieur-Archiv. 41. 46–60.

    Article  MATH  Google Scholar 

  6. Maier, G., 1973. Mathematical programming methods in structural analysis. In: Brebbia, C. & H. Tottenham (eds.), Variational methods in engtneertng, Proc. Int. Conf Southampton University Press. Southampton. Vol.2, 8/1–8/32.

    Google Scholar 

  7. Maier, G. 1972. Incremental Elastoplastic Analysis in the Presence of Large Displacements and Physical Instabi lizing Effects, Int. Jnl Solids and Structures, Vol. 7, 345–372, 1971.

    Article  MathSciNet  Google Scholar 

  8. Klarbring, A, 1986. Genera l contact boundary conditions and the analysis of frictional systems. Int. J. Solids Structures, 22, 1377–1398.

    Article  MathSciNet  MATH  Google Scholar 

  9. Liolios, A.A. 1984. A finite-element central-difference approach to the dynamic problem of nonconvex unilateral contact between structures. In: B. Sendov, R. Lazarov and P. Vasilevski (eds.), Numerical Methods and Applications. pp. 394–401. Bulgarian Acad, Sciences, Sofia.

    Google Scholar 

  10. Liolios, A.A., 1989. A linear complementar ity approach to the nonconvex dynamic problem of unilateral contact with friction between adjacent structures. Z. Angew. Math. Mech., 69, T420–T422.

    Article  Google Scholar 

  11. Newmark. N.M. & E. Rosenblueth, 1971. Fundamentals of earthquake engineering. Prentice-Hall, Inc, Englewood Cliffs, N.J..

    Google Scholar 

  12. Bertero, V.V. 1987. Observations on structural pounding. Proc. Intern. Conf. “The Mexico Earthquakes”, ASCE, 264–278

    Google Scholar 

  13. Anagnostopoulos, S.A. and Spiliopoulos K.V. 1991. Analysis of Building ounding due to Earthquakes. In: Krätzig W.B. et al (eds.), Structural Dynamics, pp. 479–484, Balkerna, Rotterdam.

    Google Scholar 

  14. Papadrakakis, M., Apostolopoulou, K., Bitzarakis, S. and Zacharopoulos, A 1993. A 3D model for the analysis of building pounding during earthquakes. In: Moan, T. et al., (eds.). Structural Dynamics-Eurodyn’ 93, pp. 85–92, Balkema, Rotterdam.

    Google Scholar 

  15. Wolf J.P. and Skrikerud, P.E. 1980. Mutual pounding of adjacent structures during earthquakes. Nuclear Engin. Design, vol. 57, 253–275.

    Article  Google Scholar 

  16. Talaslidis, D. & P.O. Panagiotopoulos=, 1982. A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics. Int. J. Num. Meth. Enging, 18, 1505–1520.

    Article  MATH  Google Scholar 

  17. Anastasiadis, K. 1986. Méthode simplifiée de calcul du second ordre de bâtiments àa étage, Construction Metallique, No 4: 43–68.

    Google Scholar 

  18. Chen, W.F. and Lui, E.M. 1981. Structural Stability, Elsevier, New York.

    Google Scholar 

  19. Bisbos, C., 1982, Optimal control of structures, Doctoral Dissertation, Aristotle University, School of Technology, Thessaloniki, Greece.

    Google Scholar 

  20. Bisbos, C., 1985. Aktive Steuerung erdbebenerregter Hochhäuser, ZAMM, 65, T297–9.

    MATH  Google Scholar 

  21. Zacharenakis, E.C., 1995. Input-Out put decoupling and disturbance rejection problem in structural analysis, Computers & Structures, 55, 441–451.

    Article  MATH  Google Scholar 

  22. Zacharenakis, E.C., 1997. On the Disturbance Attenuation and H-Optimization in structural analysis, ZAMM, Z. Angew, Math. Mech. 77, no. 3, 189–195.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kobori, T., 1994, Current developments in active seismic response control of building structure, paper presented in: Savidis, S. (ed. and chairman), ERCAD 94-2nd Int. Conf. Earthq. Constr. Design, June 1994, Berlin, (see also: Kobori, T., 1993, Structural Response Control, Kajima Public. Inc., in Japanese).

    Google Scholar 

  24. Paraskevopoulos, P.N., 1996, Digital Control Systems, Prentice-Hall Inc., London.

    MATH  Google Scholar 

  25. Boglou, A K. and Papadopoulos, D. P., 1988, Frequency-domain order reduction methods applied to a hydro power system, Archiv für Elektrotechnik, vol. 71, 413–419.

    Article  Google Scholar 

  26. Baniotopoulos, C.C., 1989, Optimal control of submarine cables in unilateral contact with the sea-bed profile, Comp. & Struct. 33(2), 601–608.

    Article  MATH  Google Scholar 

  27. Baniotopoulos, C.C., 1995, Optimal control of above-ground pipelines under dynamic excitat ions, Int. Jnl Pressure Vessel & Piping 63, 211–222.

    Article  Google Scholar 

  28. Panagiotopoulos=, P.D., 1983, Non-convex Energy Functions. Hemivariationallnequalities and Substationarity principles. Acta Mechanica, 48, 111–130.

    Google Scholar 

  29. Erdik, M., Çakmak, AS., E. Durukal, 1998. “Assessment of the Earthquake Performance of Hagia Sophia”. In: M. Erdik, E. Durukal and A Moropoulou (eds.), Earthquake Performance of Historic Monuments and Protection Requirements, Proceedings of the INCOMARECH 2nd Workshop, Istanbul, Boĝaziçi University, 2–3 Oct. 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liolios, A.A. (2001). The Need for Data from Instrumented Structures for an Optimal Control Approach to the Seismic Interaction between Adjacent Buildings. In: Erdik, M., Celebi, M., Mihailov, V., Apaydin, N. (eds) Strong Motion Instrumentation for Civil Engineering Structures. NATO Science Series, vol 373. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0696-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0696-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6917-2

  • Online ISBN: 978-94-010-0696-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics