Calcium Binding to Extracellular Matrix Proteins, Functional and Pathological Effects

  • Alexander W. Koch
  • Jürgen Engel
  • Patrik Maurer


Calcium concentrations in the extracellular space are 4 to 5 orders of magnitude larger than inside cells. These concentrations are highly controlled by a unique receptor system (Brown et al., 1995); Ward and Ricardi, this book; Brown et al., this book). Free calcium concentration in serum has been determined to be 1.2 mM, however, spatial and time-dependent fluctuations have been detected (for a review, see Maurer et al., 1996). Many different proteins in the extracellular space bind calcium ions and a variety of calcium-binding motifs have been identified in these proteins, e.g. the EF-hand motif, which is common in cytosolic proteins (Maurer et al., 1996). Calcium ions bound to extracellular proteins may serve various functions, but primarily stabilize protein structure which explains tight calcium binding (micromolar or smaller K D values). In addition, sites for weakly bound calcium ions may sense variations in extracellular calcium levels and may be involved in regulation (Maurer et al., 1996); (Koch et al., 1997). This chapter will focus on relevant findings concerning functional and pathological effects of calcium binding to two extracellular matrix proteins (fibrillin-1 and COMP) and the cell adhesion protein E-cadherin. Possible molecular mechanisms for these effects will be discussed as well.


Arthritis Codon Adenoma Cysteine Proline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashworth, J.L., Murphy, G., Rock, M.J., Sherratt, M.J., Shapiro, S.D., Shuttleworth, C.A. and Kielty, C.M., 1999, Fibrillin degradation by matrix metalloproteinases: Implications for connective tissue remodelling, Biochem. J. 340, 171–181.PubMedCrossRefGoogle Scholar
  2. Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R. and Hofler, H., 1994, E-cadherin gene mutations provide clues to diffuse type gastric carcinomas, Cancer Res. 54, 3845–3852.PubMedGoogle Scholar
  3. Briggs, M.D., Hoffman, S.M., King, L.M., Olsen, A.S., Mohrenweiser, H., Leroy, J.G., Mortier, G.R., Rimoin, D.L., Lachman, R.S., Gaines, E.S. et al., 1995, Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene, Nat. Genet. 10, 330–336.PubMedCrossRefGoogle Scholar
  4. Brown, E.M., Vassilev, RM. and Hebert, S.C., 1995, Calcium ions as extracellular messengers, Cell 83, 679–682.PubMedCrossRefGoogle Scholar
  5. Brown, E.M., Pollak, M. and Hebert, S.C., 1998, The extracellular calcium-sensing receptor: Its role in health and disease, Annu. Rev. Med. 49, 15–29.PubMedCrossRefGoogle Scholar
  6. Deere, M., Sanford, T., Francomano, C.A., Daniels, K. and Hecht, J.T., 1999, Identification of nine novel mutations in cartilage oligomeric matrix protein in patients with pseudoachondroplasia and multiple epiphyseal dysplasia, Am. J. Med. Genet. 85, 486–490.PubMedCrossRefGoogle Scholar
  7. Delot, E., Brodie, S.G., King, L.M., Wilcox, W.R. and Cohn, D.H., 1998, Physiological and pathological secretion of cartilage oligomeric matrix protein by cells in culture, J. Biol. Chem. 273, 26692–26697.PubMedCrossRefGoogle Scholar
  8. Delot, E., King, L.M., Briggs, M.D., Wilcox, W.R. and Cohn, D.H., 1999, Trinucleotide expansion mutations in the cartilage oligomeric matrix protein (COMP) gene, Hum. Mol. Genet. 8, 123–128.PubMedCrossRefGoogle Scholar
  9. DiCesare, P., Hauser, N., Lehman, D., Pasumarti, S. and Paulsson, M., 1994, Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon, FEBS Lett. 354, 237–240.PubMedCrossRefGoogle Scholar
  10. DiCesare, P., Carlson, C., Stollerman, E., Chen, F., Leslie, M. and Perris, R., 1997, Expression of cartilage oligomeric matrix protein by human synovium, FEBS Lett. 412, 249–252.CrossRefGoogle Scholar
  11. Downing, A.K., Knott, V., Werner, J.M., Cardy, CM., Campbell, I.D. and Handford, P.A., 1996, Solution structure of a pair of calcium-binding epidermal growth factor-like domains: Implications for the Marfan syndrome and other genetic disorders, Cell 85, 597–605.PubMedCrossRefGoogle Scholar
  12. Forslind, K., Eberhardt, K., Jonsson, A. and Saxne, T., 1992, Increased serum concentrations of cartilage oligomeric matrix protein. A prognostic marker in early rheumatoid arthritis, Br. J. Rheumatol 3, 593–598.CrossRefGoogle Scholar
  13. Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A. and Reeve, A.E., 1998, E-cadherin germline mutations in familial gastric cancer, Nature 392, 402–405.PubMedCrossRefGoogle Scholar
  14. Handford, P., Downing, A.K., Rao, Z., Hewett, D.R., Sykes, B.C. and Kielty, C.M., 1995, The calcium binding properties and molecular organization of epidermal growth factor-like domains in human fibrillin-1, J. Biol. Chem. 270, 6751–6756.PubMedCrossRefGoogle Scholar
  15. Hecht, J.T., Deere, M., Putnam, E., Cole, W., Vertel, B., Chen, H. and Lawler, J., 1998, Characterization of cartilage oligomeric matrix protein (COMP) in human normal and pseudoachondroplasia musculoskeletal tissues, Matrix Biol. 17, 269–278.PubMedCrossRefGoogle Scholar
  16. Hecht, J.T., Nelson, L.D., Crowder, E., Wang, Y., Elder, F.F., Harrison, W.R., Francomano, C.A., Prange, C.K., Lennon, G.G., Deere, M., et al., 1995, Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia, Nat. Genet. 10, 325–329.PubMedCrossRefGoogle Scholar
  17. Hedbom, E., Antonsson, P., Hjerpe, A., Aeschlimann, D., Paulsson, M., Rosa-Pimentel, E., Sommarin, Y., Wendel, M., Oldberg, A. and Heinegard, D., 1992, Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage, J. Biol. Chem. 267, 6132–6136.PubMedGoogle Scholar
  18. Hermiston, M.L. and Gordon, J.I., 1995, Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin, Science 270, 1203–1207.PubMedCrossRefGoogle Scholar
  19. Hyafil, F., Morello, D., Babinet, C. and Jacob, F., 1980, A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos, Cell 21, 927–934.PubMedCrossRefGoogle Scholar
  20. Hyafil, F., Babinet, C. and Jacob, F., 1981, Cell-cell interactions in early embryogenesis: A molecular approach to the role of calcium, Cell 26, 447–454.PubMedCrossRefGoogle Scholar
  21. International Working Group on Constitutional Diseases of Bone, 1998, International no-menclature and classification of the osteochondrodysplasias, 1997, International Working Group on Constitutional Diseases of Bone, Am. J. Med. Genet. 79, 376–382.CrossRefGoogle Scholar
  22. Karayiannakis, A.J., Syrigos, K.N., Efstathiou, J., Valizadeh, A., Noda, M., Playford, R.J., Kmiot, W. and Pignatelli, M., 1998, Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease, J. Pathol. 185, 413–418.PubMedCrossRefGoogle Scholar
  23. Knott, V., Downing, A.K., Cardy, C.M. and Handford, P., 1996, Calcium binding properties of an epidermal growth factor-like domain pair from human fibrillin-1, J. Mol. Biol. 255, 22–27.PubMedCrossRefGoogle Scholar
  24. Koch, A.W., Pokutta, S., Lustig, A. and Engel, J., 1997, Calcium binding and homoassociation of E-cadherin domains, Biochemistry 36, 7697–7705.PubMedCrossRefGoogle Scholar
  25. Koch, A.W., Bozic, D., Pertz, O. and Engel, J., 1999, Homophilic adhesion by Cadherins, Curr. Opin. Struct. Biol. 9, 275–281.PubMedCrossRefGoogle Scholar
  26. Kraulis, P.J., 1991, MOLSCRIPT, a program to produce both detailed and schematic plots of protein structure, J. Appl. Cryst. 24, 946–950.CrossRefGoogle Scholar
  27. Maddox, B.K., Keene, D.R., Sakai, L.Y., Charbonneau, N.L., Morris, N.P., Ridgway, C.C., Boswell, B.A., Sussman, M.D., Horton, W.A., Bachinger, H.P. and Hecht, J.T., 1997, The fate of cartilage oligomeric matrix protein is determined by the cell type in the case of a novel mutation in pseudoachondroplasia, J. Biol. Chem. 272, 30993–30997.PubMedCrossRefGoogle Scholar
  28. Malashkevich, V., Kammerer, R., Efimov, V., Schulthess, T. and Engel, J., 1996, The crystal structure of a five-stranded coiled coil in COMP: A prototype ion channel?, Science 274, 761–765.PubMedCrossRefGoogle Scholar
  29. Marra, A. and Isberg, R.R., 1996, Bacterial pathogenesis: Common entry mechanisms, Curr. Biol. 6, 1084–1086.PubMedCrossRefGoogle Scholar
  30. Maurer, P., Hohenester, E. and Engel, J., 1996, Extracellular calcium binding proteins, Curr. Opin. Cell Biol. 8, 609–617.PubMedCrossRefGoogle Scholar
  31. Maynard, J.A., Cooper, R.R. and Ponseti, I.V., 1972, A unique rough surfaced endoplasmic reticulum inclusion in pseudoachondroplasia, Lab. Invest. 26, 40–44.PubMedGoogle Scholar
  32. Misenheimer, T.M. and Mosher, D.F., 1995, Calcium ion binding to thrombospondin 1, J. Biol. Chem. 270, 1729–1733.PubMedCrossRefGoogle Scholar
  33. Mörgelin, M., Heinegard, D., Engel, J. and Paulsson, M., 1992, Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a five-armed structure, J. Biol. Chem. 267, 6137–6141.PubMedGoogle Scholar
  34. Nagar, B., Overduin, M., Ikura, M. and Rini, J.M., 1996, Structural basis of calcium-induced E-cadherin rigidification and dimerization, Nature 380, 360–364.PubMedCrossRefGoogle Scholar
  35. Neidhart, M., Hauser, N., Paulsson, M., Di Cesare, P.E., Michel, B.A. and Hauselmann, H.J., 1997, Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation, Br. J. Rheumatol. 36, 1151–1160.PubMedCrossRefGoogle Scholar
  36. Nose, A., Tsuji, K. and Takeichi, M., 1990, Localization of specificity determining sites in Cadherin cell adhesion molecules, Cell 6, 147–155.CrossRefGoogle Scholar
  37. Oldberg, A., Antonsson, P., Lindblom, K. and Heinegard, D., 1992, COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins, J. Biol. Chem. 267, 22346–22350.PubMedGoogle Scholar
  38. Perl, A.K., Wilgenbus, P., Dahl, U., Semb, H. and Christofori, G., 1998, A causal role for E-cadherin in the transition from adenoma to carcinoma, Nature 392, 190–193.PubMedCrossRefGoogle Scholar
  39. Persson, E., Selander, M., Linse, S., Drakenberg, T., Oehlin, A.-K. and Stenflo, J., 1989. Calcium binding to the isolated β-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X, J. Biol. Chem. 264, 16897–16904.PubMedGoogle Scholar
  40. Pertz, O., Bozic, D., Koch, A.W., Fauser, C., Brancaccio, A. and Engel, J., 1999, A new crystal structure Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation, EMBO J. 18, 1738–1747.PubMedCrossRefGoogle Scholar
  41. Pokutta, S., Herrenknecht, K., Kemler, R. and Engel, J., 1994, Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding, Eur. J. Biochem. 223, 1019–1026.PubMedCrossRefGoogle Scholar
  42. Ramirez, F. and Pereira, L., 1999, The fibrillins, Int. J. Biochem. Cell. Biol. 31, 255–259.PubMedCrossRefGoogle Scholar
  43. Rand, M.D., Lindblom, A., Carlson, J., Villoutreix, B.O. and Stenflo, J., 1997, Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions, Protein Sci. 6, 2059–2071.PubMedCrossRefGoogle Scholar
  44. Reinhardt, D.P., Ono, R.N. and Sakai, L.Y., 1997, Calcium stabilizes fibrillin-1 against proteolytic degradation, J. Biol. Chem. 272, 1231–1236.PubMedCrossRefGoogle Scholar
  45. Reinhardt, D.P., Ono, R.N., Notbohm, H., Mueller, P.K., Bächinger, H.P. and Sakai, L.Y., 2000, Mutations in calcium-binding EGF modules render fibrillin-1 susceptible to proteolysis: A potential disease-causing mechanism in Marfan syndrom, J. Biol. Chem. 275, 12339–12345.PubMedCrossRefGoogle Scholar
  46. Ringwald, M., Schuh, R., Vestweber, D., Eistetter, H., Lottspeich, F., Engel, J., Dolz, R., Jahnig, F., Epplen, J., Mayer, S., Müller, C. and Kemler, R., 1987, The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion, EMBO J. 6, 3647–3653.PubMedGoogle Scholar
  47. Sakai, L.Y. and Keene, D.R., 1994, Fibrillin: Monomers and microfibrils, Methods Enzymol. 245, 29–52.PubMedCrossRefGoogle Scholar
  48. Sansonetti, P.J., Mounier, J., Prévost, M.C. and Mege, R.M., 1994, Cadherin expression is required for the spread of Shigella flexneri between epithelial cells, Cell 76, 829–839.PubMedCrossRefGoogle Scholar
  49. Saxne, T. and Heinegard, D., 1992, Cartilage oligomeric matrix protein: A novel marker of cartilage turnover detectable in synovial fluid and blood, Br. J. Rheumatol. 31, 583–591.PubMedCrossRefGoogle Scholar
  50. Semb, H. and Christofori, G., 1998, The tumor-suppressor function of E-cadherin, Am. J. Hum. Genet. 63, 1588–1593.PubMedCrossRefGoogle Scholar
  51. Shapiro, L., Fannon, A.M., Kwong, P.D., Thompson, A., Lehmann, M.S., Grubel, G., Legrand, J.F., Als-Nielsen, J., Colman, D.R. and Hendrickson, W.A., 1995, Structural basis of cell-cell adhesion by Cadherins, Nature 374, 327–337.PubMedCrossRefGoogle Scholar
  52. Smallridge, R.S., Whiteman, P., Doering, K., Handford, P.A. and Downing, A.K., 1999, EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1, J. Mol. Biol 286, 661–668.PubMedCrossRefGoogle Scholar
  53. Takeichi, M., 1988, The Cadherins: Cell-cell adhesion molecules controlling animal morphogenesis, Development 102, 639–655.PubMedGoogle Scholar
  54. Tamura, K., Shan, W.-S., Hendrickson, W.A., Colman, D.R. and Shapiro, L., 1998, Structure-function analysis of cell adhesion by neural (N-) Cadherin, Neuron 20, 1153–1163.PubMedCrossRefGoogle Scholar
  55. Vestweber, D. and Kemler, R., 1984, Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues, Exp. Cell. Res. 52, 169–178.CrossRefGoogle Scholar
  56. Wu, Q. and Maniatis, T., 1999, A striking organization of a large family of human neural cadherin-like cell adhesion genes, Cell 97, 779–790.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Alexander W. Koch
    • 1
  • Jürgen Engel
    • 2
  • Patrik Maurer
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyMt. Sinai School of MedicineNew YorkUSA
  2. 2.Biozentrum der UniversitätBaselSwitzerland
  3. 3.Institut für BiochemieKölnGermany

Personalised recommendations