Skip to main content

The Interaction of Calmodulin with Novel Target Proteins

  • Chapter

Abstract

Ionized calcium (Ca2+) is the most common signal transduction element in cells. Intracellular free Ca2+ concentrations ([Ca2+] i ), which average ∼ 100 nM in resting cells, are 20,000-fold lower than the extracellular concentrations (Clapham, 1995; Berridge, 1993). Unlike other signaling molecules, Ca2+ cannot be metabolized. Therefore, cells contain numerous specialized extrusion proteins (e.g., pumps and channels) and binding proteins that tightly regulate [Ca2+] i . Ca2+ is required for proliferation and survival of mammalian cells (Takuwa et al., 1995), yet paradoxically, prolonged high [Ca2+]i leads to cell death (Nicotera et al., 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anborgh, P.H., Qian, X., Papageorge, A.G., Vass, W.C., DeClue, J.E. and Lowy, D.R., 1999, Ras-specific exchange factor GRF: Oligomerization through its dbl homology domain and calcium-dependent activation of Raf, Mol. Cell. Biol. 19, 6411–6422.

    Google Scholar 

  • Arava, Y., Seger, R. and Walker, M.D., 1999, GRF/β, a novel regulator of calcium signaling, is expressed in pancreatic beta cells and brain, J. Biol. Chem. 214, 24449–24452.

    Google Scholar 

  • Baouz, S., Jacquet, E., Bernardi, A. and Parmeggiani, A., 1997, The N-terminal moiety of CDC25Mm, a GDP/GTP exchange factor of Ras proteins, controls the activity of the catalytic domain, J. Biol. Chem. 272, 6671–6676.

    PubMed  CAS  Google Scholar 

  • Bashour, A.-M., Fullerton, A.T., Hart, M.J. and Bloom, G.S., 1997, IQGAP1, a Rac-and Cdc42-binding protein, directly binds and cross-links microfilaments, J. Cell Biol. 137, 1555–1566.

    PubMed  CAS  Google Scholar 

  • Benguria, A., Perera, O.H., Pastor, M.T., Sacks, D.B. and Villalobo, A., 1994, Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase, Eur. J. Biochem. 224, 909–916.

    PubMed  CAS  Google Scholar 

  • Benguria, A., Soriano, M., Joyal, J.L., Sacks, D.B. and Villalobo, A., 1995, Phosphorylation of calmodulin by plasma-membrane-associated protein kinase(s), Eur. J. Biochem. 234, 50–58.

    PubMed  CAS  Google Scholar 

  • Bernards, A., 1995, Neurofibromatosis type 1 and Ras-mediated signaling: Filling in the GAPs, Biochim. Biophys. Acta 1242, 43–59.

    PubMed  Google Scholar 

  • Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling, Nature 361, 315–325.

    PubMed  CAS  Google Scholar 

  • Bouhoute, A. and Leclercq, G., 1995, Modulation of estradiol and DNA binding to estrogen receptor upon association with calmodulin, Biochem. Biophys. Res. Commun. 208, 748–755.

    PubMed  CAS  Google Scholar 

  • Boynton, A.L., Whitfield, J.E., Isaacs, R.J. and Tremblay, R.G., 1977, Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells, Cancer Res. 37, 2657–2661.

    PubMed  CAS  Google Scholar 

  • Brady, M.J. and Palfrey, H.C., 1993, Rapid and sustained phosphorylation of a calmodulinbinding protein (CaM-BP100) in NGF-treated PC12 cells, J. Biol. Chem. 268, 17951–17958.

    PubMed  CAS  Google Scholar 

  • Braga, V.M.M., Machesky, L.M., Hall, A.A. and Hotchin, N.A., 1997, The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts, J. Cell Biol. 137, 1421–1431.

    PubMed  CAS  Google Scholar 

  • Buchsbaum, R., Telliez, J.-R., Goonesekera, S. and Feig, L.A., 1996, The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium, Mol. Cell. Biol. 16, 4888–4896.

    PubMed  CAS  Google Scholar 

  • Carafoli, E. and Klee, C, 1999, Calcium as a Cellular Regulator Oxford University Press, New York.

    Google Scholar 

  • Castoria, G., Migliaccio, A., Nola, E. and Auricchio, F., 1988, In vitro interaction of estradiol receptor with Ca2+-calmodulin, Mol. Endo. 2, 167–174.

    CAS  Google Scholar 

  • Cheney, R.E. and Mooseker, M.S., 1992, Unconventional myosins, Curr. Opin. Cell Biol. 4, 27–35.

    PubMed  CAS  Google Scholar 

  • Chuang, T.T., Paolucci, L. and DeBlasi, A., 1996, Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin, J. Biol. Chem. 271, 28691–28696.

    PubMed  CAS  Google Scholar 

  • Clapham, D.E., 1995, Calcium signaling, Cell 80, 259–268.

    PubMed  CAS  Google Scholar 

  • Cohen, P. and Klee, C., 1988, Calmodulin, Elsevier, New York.

    Google Scholar 

  • Coppola, T., Perret-Menoud, V., Luthi, S., Farnsworh, C.C., Glomset, J.A. and Regazzi, R., 1999, Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis, EMBO J. 18, 5885–5891.

    PubMed  CAS  Google Scholar 

  • Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S.A. and Schlessinger, J., 1996, A role for Pyk2 and Src in linking G-protein-coupled receptor with MAP kinase activation, Nature 383, 547–550.

    PubMed  CAS  Google Scholar 

  • Erickson, J.W., Cerione, R.A. and Hart, M.J., 1997, Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase, J. Biol. Chem. 272, 24443–24447.

    PubMed  CAS  Google Scholar 

  • Exton, J., 1998, Small GTPase minireview series, J. Biol. Chem. 273, 7.

    Google Scholar 

  • Farnsworth, C.L., Freshney, N.W., Rosen, L.B., Ghosh, A., Greenberg, M.E. and Feig, L.A., 1995, Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF, Nature 376, 524–527.

    PubMed  CAS  Google Scholar 

  • Fischer, R., Wei, Y., Anagli, J. and Berchtold, M.W., 1996, Calmodulin binds to and inhibits GTP binding of the Ras-like GTPase Kir/Gem, J. Biol. Chem. 271, 25067–25070.

    PubMed  CAS  Google Scholar 

  • Fischer, R., Julsgart, J. and Berchtold, M.W., 1998, High affinity calmodulin target sequence in the signalling molecule PI3-kinase, FEBS Lett. 425, 175–177.

    PubMed  CAS  Google Scholar 

  • Fukata, M., Kuroda, S., Nakagawa, M., Kawajiri, A., Itoh, N., Shoji, I., Matsuura, Y., Yonehara, S., Fujisawa, H., Kikuchi, A. and Kaibuchi, K., 1999, Cdc42 and Racl regulate the interaction of IQGAP 1 with beta-catenin, J. Biol. Chem. 274, 26044–26050.

    PubMed  CAS  Google Scholar 

  • Graves, C.B., Goewert, R.R. and McDonald, J.M., 1985, The insulin receptor contains a calmodulin-binding domain, Science 230, 827–829.

    PubMed  CAS  Google Scholar 

  • Gutkind, J.S., 1998, The pathways conecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades, J. Biol. Chem. 273, 1839–1842.

    PubMed  CAS  Google Scholar 

  • Hait, W.N. and Lazo, J.S., 1986, Calmodulin: A potential target for cancer chemotherapeutic agents, J. Clin. Oncol. 4, 994–1012.

    PubMed  CAS  Google Scholar 

  • Hall, A., 1998, Rho GTPases and the actin cytoskeleton, Science 279, 509–514.

    PubMed  CAS  Google Scholar 

  • Hamm, H.E., 1998, The many faces of G protein signaling, J. Biol. Chem. 273, 669–672.

    PubMed  CAS  Google Scholar 

  • Hart, M.J., Callow, M.G., Souza, B. and Polakis, P., 1996, IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs, EMBO J. 15, 2997–3005.

    PubMed  CAS  Google Scholar 

  • Hasson, T. and Mooseker, M.S., 1996, Vertebrate unconventional myosins, J. Biol. Chem. 271, 16431–16434.

    PubMed  CAS  Google Scholar 

  • Ho, Y.-D., Joyal, J.L., Li, Z. and Sacks, D.B., 1999, IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling, J. Biol. Chem. 274, 464–470.

    PubMed  CAS  Google Scholar 

  • Houdusse, A. and Cohen, C, 1995, Target sequence recognition by the calmodulin superfamily: Implication from light chain binding to the regulatory domain of scallop myosin, Proc. Natl. Acad. Sci. USA 92, 10644–10647.

    PubMed  CAS  Google Scholar 

  • Houdusse, A., Silver, M. and Cohen, C., 1996, A model of Ca2+-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch, Structure 4, 1475–1490.

    PubMed  CAS  Google Scholar 

  • Huckle, W.R., Dy, R.C. and Earp, S.H., 1992, Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II, Proc. Natl. Acad. Sci. USA 89, 8837–8841.

    PubMed  CAS  Google Scholar 

  • Hunter, T., 1997, Oncoprotein networks, Cell 88, 333–346.

    PubMed  CAS  Google Scholar 

  • Iacovelli, L., Sallese, M., Mariggio, S. and deBlasi, A., 1999, Regulation of G protein-coupled receptor kinase subtype by calcium sensor proteins, FASEB J. 1, 1–8.

    Google Scholar 

  • Jiang, W.G., 1996, E-cadherin and its associated protein catenins, cancer invasion and metastasis, Brit. J. Surg. 83, 437–446.

    PubMed  CAS  Google Scholar 

  • Joyal, J.L. and Sacks, D.B., 1994, Insulin-dependent phosphorylation of calmodulin in rat hepatocytes, J. Biol. Chem. 269, 30039–30048.

    PubMed  CAS  Google Scholar 

  • Joyal, J.L., Annan, R.S., Ho, Y.D., Huddleston, M.E., Carr, S.A., Hart, M.J., and Sacks, D.B., 1997a, Calmodulin modulates the interaction between IQGAP1 and Cdc42. Identification of IQGAP1 by nanoelectrospray tandem mass spectrometry, J. Biol. Chem. 272, 15419–15425.

    PubMed  CAS  Google Scholar 

  • Joyal, J.L., Burks, D.J., Pons, S., Matter, W.F., Vlahos, C.J., White, M.R and Sacks, D.B., 1997b, Calmodulin activates phosphatidylinositol 3-kinase, J. Biol. Chem. 272, 28183–28186.

    PubMed  CAS  Google Scholar 

  • Katori, T., Yasuda, H., Fukuda, H. and Kimura, S., 1994, Involvement of Ca2+-calmodulin in platelet-derived growth factor-, fibroblast growth factor-, and insulin-induced ornithine decarboxylase in NIH-3T3 cells, Metabolism 43, 4–10.

    PubMed  CAS  Google Scholar 

  • Keely, P.J., Westwick, J.K., Whitehead, I.P., Der, C.J. and Parise, L.V., 1997, Cdc42 and Racl induce integrin-mediated cell motility and invasiveness through PI(3)K, Nature 390, 632–636.

    PubMed  CAS  Google Scholar 

  • Koch, A., Engel, J. and Maurer, P., Calcium binding to extracellular matrix proteins, functional and pathological effects, this book.

    Google Scholar 

  • Kretsinger, R.H., Rudnick, S.E. and Weissman, L.J., 1986, Crystal structure of calmodulin, J. Inorg. Biochem. 28, 289–302.

    PubMed  CAS  Google Scholar 

  • Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, T., Izawa, I., Nagase, T., Nomura, N., Tani, H., Shoji, I., Matsuura, Y., Yonehard, S. and Kaibuchi, K., 1998, Role of IQGAP1, a target of the small GTPases Cdc42 and Racl, in regulation of E-cadherin-mediated cell-cell adhesion, Science 281, 832–835.

    PubMed  CAS  Google Scholar 

  • Lee, C.J., Delia, N.G., Chew, C.E. and Zack, D.J., 1996, Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of Ras proteins, J. Neuroscience 16, 6784–6794.

    CAS  Google Scholar 

  • Lefkowitz, R.J., 1998, G protein-coupled receptors, J. Biol Chem. 273, 18677–18680.

    PubMed  CAS  Google Scholar 

  • Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J.M., Plowman, G.D., Rudy, B. and Schlessinger, J., 1995, Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions, Nature 376, 737–745.

    PubMed  CAS  Google Scholar 

  • Levay, K., Satpaev, D.K., Pronin, A.N., Benovic, J.L. and Slepak, V.Z., 1998, Localization of the sites for Ca 2+-binding proteins on G protein-coupled receptor kinases, Biochemistry 37, 13650–13659.

    PubMed  CAS  Google Scholar 

  • Levy, J., Gavin, J.R. and Sowers, J.R., 1994, Diabetes mellitus: A disease of abnormal cellular calcium metabolism, Am. J. Med. 96, 260–273.

    PubMed  CAS  Google Scholar 

  • Li, Z., Lee, S., Higgins, J., Brenner, M. and Sacks, D.B., 1999, Calmodulin and IQGAP1 modulate E-cadherin function, J. Biol. Chem. 274, 37885–37892.

    PubMed  CAS  Google Scholar 

  • Li, Z., Joyal, J.L. and Sacks, D.B., 2000, Binding of IRS proteins to calmodulin is enhanced in insulin resistance, Biochemistry 39, 5089–5096.

    PubMed  CAS  Google Scholar 

  • Liu, J., Farmer, J.D., Jr., Lane, W.S., Friedman, J., Weissman, I. and Schreiber, S.L., 1991, Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes, Cell 66, 807–815.

    PubMed  CAS  Google Scholar 

  • Liu, M., Yu, B., Nakanishi, O., Wieland, T. and Simon, M., 1997, The Ca2+-dependent binding of calmodulin to an N-terminal motif of the heterotrimeric G protein beta subunit, J. Biol Chem. 272, 18801–18807.

    PubMed  CAS  Google Scholar 

  • Macara, I.G., Lounsbury, K., Richards, S.A., McKiernan, C. and Bar-Sagi, D., 1996, The Ras superfamily of GTPases, FASEB J. 10, 625–630.

    PubMed  CAS  Google Scholar 

  • Martin-Nieto, J. and Villalobo, A., 1998, The human epidermal growth factor receptor contains a juxtamembrane calmodulin-binding site, Biochemistry 37, 227–236.

    PubMed  CAS  Google Scholar 

  • Michiels, F., Habets, G.G.M., Stam, J.C. van der Kämmen, R.A. and Collard, J.G., 1995, A role for Rac in Tiaml-induced membrane ruffling and invasion, Nature 375, 338–340.

    PubMed  CAS  Google Scholar 

  • Migliaccio, A., Rotondi, A. and Auricchio, F., 1984, Calmodulin-stimulated phosphorylation of 17β-estradiol receptor on tyrosine, Proc. Natl Acad. Sci. USA 81, 5921–5925.

    PubMed  CAS  Google Scholar 

  • Mitchell, C.E., Palmisano, W.A., Lechner, J.F., Belinsky, S.A., Bernards, A. and Weissbach, L., 1996, Altered expression of the IQGAP1 gene in human lung cancer cell lines, Proc. Annu. Meet. Am. Assoc. Cancer. Res. 37, A3563.

    Google Scholar 

  • Moyers, J.S., Bilan, P.J., Zhu, J. and Kahn, C.R., 1997, Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II, J. Biol. Chem. 272, 11832–11839.

    PubMed  CAS  Google Scholar 

  • Munshi, H.G., Burks, D.J., Joyal, J.L., White, M.F. and Sacks, D.B., 1996, Ca2+ regulates calmodulin binding to IQ motifs in IRS-1, Biochemistry 35, 15883–15889.

    PubMed  CAS  Google Scholar 

  • Nicotera, P., Zhivotovsky, B. and Orrenius, S., 1994, Nuclear calcium transport and the role of calcium in apoptosis, Cell Calcium 16, 279–288.

    PubMed  CAS  Google Scholar 

  • Okazaki, H., Zhang, J., Hamawy, M.M. and Siraganian, R.P., 1997, Activation of protein-tyrosine kinase Pyk2 is downstream of Syk in FcsRI signaling, J. Biol. Chem. 272, 32443–32447.

    PubMed  CAS  Google Scholar 

  • O’Neil, K.T. and DeGrado, W.F., 1990, How calmodulin binds its targets: Sequence independent recognition of amphiphilic α:-helices, Trends Biochem. Sci. 15, 59–64.

    PubMed  Google Scholar 

  • Park, J.B., Farnsworth, C.C. and Glomset, J.A., 1997, Ca2+/calmodulin causes Rab3A to dissociate from synaptic membranes, J. Biol. Chem. 272, 20857–20865.

    PubMed  CAS  Google Scholar 

  • Pawson, T. and Scott J.D., 1997, Signaling through scaffold, anchoring and adaptor proteins, Science 278, 2075–2080.

    PubMed  CAS  Google Scholar 

  • Pronin, A.N., Satpaev, D.K., Slepak, V.Z. and Benovic, J.L., 1997, Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain, J. Biol Chem. 272, 18273–18280.

    PubMed  CAS  Google Scholar 

  • Qiu, R.-G., Chen, J., Kirn, D., McCormick, F. and Symons, M., 1995, An essential role for Rac in Ras transformation, Nature 374, 457–459.

    PubMed  CAS  Google Scholar 

  • Rainteau, D., Sharif, A., Bourrillon, R. and Weinman, S., 1987, Calmodulin in lymphocyte mitogenic stimulation and in lymphoid cell line growth, Exp. Cell Res. 168, 546–554.

    PubMed  CAS  Google Scholar 

  • Reddy, G.P.V., Reed, W.C., Sheehan, E.L. and Sacks, D.B., 1992, Calmodulin-specific monoclonal antibodies inhibit DNA replication in mammalian cells, Biochemistry 31, 10426–10430.

    PubMed  CAS  Google Scholar 

  • Rozengurt, E., 1986, Early signals in the mitogenic response, Science 234, 161–166.

    PubMed  CAS  Google Scholar 

  • Russo, J., Calaf, G. and Russo, I.H., 1993, A critical approach to the malignant transformation of human breast epithelial cells with chemical carcinogens, Crit. Rev. Oncog. 4, 403–417.

    PubMed  CAS  Google Scholar 

  • Sacks, D.B. and McDonald, J.M., 1988, Insulin-stimulated phosphorylation of calmodulin by rat liver insulin receptor preparations, J. Biol. Chem. 263, 2377–2383.

    PubMed  CAS  Google Scholar 

  • Sacks, D.B., Fujita-Yamaguchi, Y., Gale, R.D. and McDonald, J.M., 1989, Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta, Biochem. J. 263, 803–812.

    PubMed  CAS  Google Scholar 

  • Sacks, D.B., Porter, S.E., Ladenson, J.H. and McDonald, J.M., 1991, Monoclonal antibody to calmodulin: Development, characterization and comparison with polyclonal anti-calmodulin antibodies, Anal. Biochem. 194, 369–377.

    PubMed  CAS  Google Scholar 

  • Sacks, D.B., Davis, H.W., Crimmins, D.L. and McDonald, J.M., 1992, Insulin-stimulated phosphorylation of calmodulin, Biochem. J. 286, 211–216.

    PubMed  CAS  Google Scholar 

  • San Jose, E., Benguria, A., Geller, P. and Villalobo, A., 1992, Calmodulin inhibits the epidermal growth factor receptor tyrosine kinase, J. Biol. Chem. 267, 15237–15245.

    PubMed  CAS  Google Scholar 

  • Schlessinger, J. and Ullrich, A., 1992, Growth factor signaling by receptor tyrosine kinases, Neuron 9, 383–391.

    PubMed  CAS  Google Scholar 

  • Scott, K., Sun, Y., Beckingham, K.A. and Zuker, C.S., 1997, Calmodulin regulation of Drosophila light-activated channels and receptor function mediates termination of the light response in vivo, Cell 91, 375–383.

    PubMed  CAS  Google Scholar 

  • Shapiro, L., Fannon, A.M., Kwong, P.D., Thompson, A., Lehmann, M.S., Grubel, G., Legerand, J., Ais-Nielsen, J. and Hendrickson, W.A., 1995, Structural basis of cell-cell adhesion by Cadherins, Nature 374, 327–337.

    PubMed  CAS  Google Scholar 

  • Shashkin, P., Koshkin, A., Langley, D., Ren, J.M., Westerblad, H. and Katz, A., 1995, Effects of CGS 9343B (a putative calmodulin antagonist) on isolated skeletal muscle, J. Biol Chem. 270, 25613–25618.

    PubMed  CAS  Google Scholar 

  • Shechter, Y, 1984, Trifluoperazine inhibits insulin action on glucose metabolism in fat cells without affecting inhibition of lipolysis, Proc. Natl. Acad. Sci. USA 81, 327–331.

    PubMed  CAS  Google Scholar 

  • Siciliano, J.C., Toutant, M., Derkinderen, P., Sasaki, T. and Girault, J., 1996, Differential regulation of proline-rich tyrosine kinase 2/cell adhesion kinase beta (PYK2/CAKβ) and ppl25FAK by glutamate and depolarization in rat hippocampus, J. Biol Chem. 271, 28942–28946.

    PubMed  CAS  Google Scholar 

  • Sun, X.J., Wang, L.M., Zhang, Y., Yenush, L., Myers, M.G., Jr., Glasheen, E., Lane, W.S., Pierce, J.H. and White, M.F., 1995, Role of IRS-2 in insulin and cytokine signalling, Nature 377, 173–177.

    PubMed  CAS  Google Scholar 

  • Symons, M., 1996, Rho family GTPases: The cytoskeleton and beyond, Trends Biochem. Sci. 21, 178–181.

    PubMed  CAS  Google Scholar 

  • Takeichi, M., 1991, Cadherin cell adhesion receptors as a morphogenetic regulator, Science 251, 1451–1455.

    PubMed  CAS  Google Scholar 

  • Takuwa, N., Zhou, W. and Takuwa, Y, 1995, Calcium, calmodulin and cell cycle progression, Cell Signalling 7, 93–104.

    PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou, J., Berdichevsky, F., D’Souza, B. and Burchell, J., 1993, Human models of breast cancer, Cancer Surveys 16, 59–78.

    PubMed  CAS  Google Scholar 

  • Van Eldik, I.J. and Burgess, W.H., 1983, Analytical subcellular distribution of calmodulin and calmodulin-binding proteins in normal and virus-transformed fibroblasts, J. Biol Chem. 258, 453–547.

    Google Scholar 

  • Van Eldik, L.J. and Watterson, D.M., 1998, Calmodulin and Signal Transduction, Academic Press, Orlando.

    Google Scholar 

  • Wang, D., Sadee, W. and Quillan, J.M., 1999, Calmodulin binding to G protein-copling domain of opiod receptor, J. Biol. Chem. 274, 22081–22088.

    PubMed  CAS  Google Scholar 

  • Wang, K.L. and Roufogalis, B.D., 1999, Ca2+/calmodulin stimulates GTP binding to the Rasrelated protein Ral-A, J. Biol Chem. 274, 14525–14528.

    PubMed  CAS  Google Scholar 

  • Wang, K.L., Khan, M.T. and Roufogalis, B.D., 1997, Identification and characterization of calmodulin-binding domain in Ral-A, a Ras-related GTP-binding protein purified from human erythrocyte membrane, J. Biol. Chem. 272, 16002–16009.

    PubMed  CAS  Google Scholar 

  • Watterson, D.M., Van Eldik, L.J., Smith, R.E. and Vanaman, T.C., 1976, Calcium-dependent regulatory protein of cyclic nucleotide metabolism in normal and transformed chicken embryo fibroblasts, Proc. Natl Acad. Sci. USA 73, 2711–2715.

    PubMed  CAS  Google Scholar 

  • Weissbach, L., Settleman, J., Kalady, M.F., Snijders, A.J., Murthy, A.E., Yan, YX. and Bernards, A., 1994, Identification of a human RasGAP-related protein containing calmodulin-binding motifs, J. Biol. Chem. 269, 20517–20521.

    PubMed  CAS  Google Scholar 

  • White, M.F. and Kahn, CR., 1994, The insulin signaling system, J. Biol Chem. 269, 1–4.

    PubMed  CAS  Google Scholar 

  • Wolenski, J.S., 1995, Regulation of calmodulin-binding myosins, Trends Cell Biol. 5, 310–316.

    PubMed  CAS  Google Scholar 

  • Wu, K., Nigam, S.K., Le Doux, M., Huang, Y.Y., Aoki, C. and Siekevitz, P., 1992, Occurrence of the α subunits of G proteins in cerebral cortex synaptic membrane and postsynaptic density fractions: Modulation of ADP-ribosylation by Ca2+/calmodulin, Proc. Natl. Acad. Sci. USA 89, 8686–8690.

    PubMed  CAS  Google Scholar 

  • Yang, C., Watson, R.T., Elmendorf, J.S., Sacks, D.B. and Pessin, J.E., 2000, Calmodulin antagonists inhibit insulin-stimulated GLUT4 (glucose transporter 4) translocation by preventing the formation of phosphatidylinositol 3,4,5-trisphosphate in 3T3L1 adipocytes, Mol Endocrinol. 14, 317–326.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chun, K.Y., Sacks, D.B. (2000). The Interaction of Calmodulin with Novel Target Proteins. In: Pochet, R., Donato, R., Haiech, J., Heizmann, C., Gerke, V. (eds) Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0688-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0688-0_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6422-1

  • Online ISBN: 978-94-010-0688-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics