Advertisement

S100 Proteins and Fatty Acid Transport Are Altered in Skin Diseases

  • Gerry Hagens
  • Georges Siegenthaler

Abstract

Fatty acids (FAs) are essential components for every living cell. FAs are used e.g. as metabolic fuels, as precursors of membrane lipids, or as bioactive molecules that participate in cell signaling. Disorders of FA-levels result in many diseases, indicating the existence of mechanisms that regulate FA-levels and the many diverse FA-tasks. Such regulatory mechanisms include the trafficking of FAs. In fact, FAs are highly hydrophobic and unstable molecules. They form poorly soluble salts (soap) with Ca2+ and possess surfactant properties that can become harmful to the cell. Therefore, FAs must be transported, solubilized and protected by FA-carriers.

Keywords

Arachidonic Acid S100 Protein Lamellar Body Fatty Acid Transport Psoriatic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antohe, F., Dobrila, L., Heltianu, C., Simionescu, N. and Simionescu, M., 1993, Albumin binding proteins function in the receptor-mediated binding and transcytosis of albumin across cultured endothelial cells, Eur. J. Cell. Biol. 60, 268–275.PubMedGoogle Scholar
  2. Badwey, J., Curnutte, J. and Karnovsky, M., 1981, cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils, J. Biol. Chem. 256, 12640–12643.PubMedGoogle Scholar
  3. Blobe, G.C., Khan, W.A. and Hannun, Y.A., 1995, Protein kinase C: Cellular target of the second messenger arachidonic acid, Prostaglandins Leukot. Essent. Fatty Acids 52, 129–135.PubMedCrossRefGoogle Scholar
  4. Brodersen, D.E., Nyborg, J. and Kjieldgaard, M., 1999, Zinc-binding sites of an S100 protein revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded and Zn2+-free states, Biochemistry 38, 1695–1704.PubMedCrossRefGoogle Scholar
  5. Bürgisser, D., Siegenthaler, G., Kuster, T., Hellman, U., Hunziker, P., Birchler, N. and Heizmann, C.W., 1995, Amino acid sequence analysis of human S100A7 (Psoriasin) by tandem mass spectrometry, Biochem. Biophys. Res. Comm. 217, 257–263.PubMedCrossRefGoogle Scholar
  6. Conrad, D.J., 1999, The arachidonate 12/15 lipoxygenases. A review of tissue expression and biologic function, Clin. Rev. Allergy Immunol. 17, 71–89.PubMedCrossRefGoogle Scholar
  7. Dale, B.A., Resing, K.A. and Presland, R.B., 1994, Keratohyalin granule proteins, in The Keratinocyte Handbook, E.B. Lane and F.M. Watt (eds.), Cambridge University Press, Cambridge, pp. 323–350.Google Scholar
  8. Donato, R., 1999, Functional roles of S100A proteins, calcium-binding proteins of the EF-hand type, Biochim. Biophys. Acta 1450, 191–231.PubMedCrossRefGoogle Scholar
  9. Duell, E.A., Ellis, C.N. and Voorhees, J.J., 1988, Determination of 5,12, and 15-lipoxygenase products in keratomed biopsies of normal and psoriatic skin, J. Invest. Dermatol. 91, 446–450.PubMedCrossRefGoogle Scholar
  10. Edgeworth, J., Freemont, P. and Hogg, N., 1989, Ionomycin-regulated phosphorylation of the myeloid calcium-binding protein pl4, Nature 342, 189–192.PubMedCrossRefGoogle Scholar
  11. Edgeworth, J., Gorman, M., Bennet, R., Freemont, P. and Hogg, N., 1991, Identification of p8,14 as a highly abundant heterodimeric calcium-binding protein complex of myeloid cells, J. Biol. Chem. 266, 7706–7713.PubMedGoogle Scholar
  12. Egljio, K., Hennings, H. and Clausen, O.P.F., 1986, Altered growth kinetics proceed Ca2+-induced differentiation in mouse epidermal cells, In Vitro 22, 332–336.Google Scholar
  13. Fogh, K., Herlin, T. and Kragballe, K., 1989, Eicosanoids in acute and chronic psoriatic lesions: Leukotriene B4, but not 12-hydroxy-eicosatetraenoic acid, is present in biologically active amounts in acute guttate lesions, J. Invest. Dermatol. 92, 837–841.PubMedCrossRefGoogle Scholar
  14. Forslind, B., Werner-Linde, Y., Lindberg, M. and Pallon, J., 1999, Elemental analysis mirrors epidermal differentiation, Acta Derm. Venereol. 79, 12–17.PubMedCrossRefGoogle Scholar
  15. Glatz, J.F.C. and van der Vusse, G.J., 1996, Cellular fatty acid-binding proteins: Their function and physiological significance, Prog. Lipid Res. 35, 243–282.PubMedCrossRefGoogle Scholar
  16. Glatz, J.F.C., Luiken, J.J.F.P., van Nieuwenhoven, F.A. and van der Vusse, G.J., 1997, Molecular mechanisms of cellular uptake and intracellular translocation of fatty acids, Prostaglandins Leukot. Essent. Fatty Acids 57, 3–9.PubMedCrossRefGoogle Scholar
  17. Goetzl, E.J., An, S. and Smith, W.L., 1995, Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases, FASEB J. 9,1051–1058.PubMedGoogle Scholar
  18. Guignard, F., Mauel, J. and Markert, M., 1996, Phosphorylation of Myeloid-related proteins MRP14 and MRP8 during human neutrophil activation, Eur. J. Biochem. 241, 265–271.PubMedCrossRefGoogle Scholar
  19. Hagens, G., Masouye, I., Augsburger, E., Hotz, R., Saurat, J.H. and Siegenthaler, G., 1999a, Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes, Biochem. J. 339, 419–427.PubMedCrossRefGoogle Scholar
  20. Hagens, G., Roulin, K., Hotz, R., Saurat, J.H., Hellman, U. and Siegenthaler, G., 1999b, Probable interaction between S100A7 and E-FABP in the cytosol of human keratinocytes from psoriatic scales, Mol. Cell. Biochem. 192, 123–128.PubMedCrossRefGoogle Scholar
  21. Heizmann, C.W. and Cox, J.A., 1998, New perspectives on S100 proteins: A multi-functional Ca(2+)-, Zn(2+)-and Cu(2+)-binding protein family, Biometals 11, 383–397.PubMedCrossRefGoogle Scholar
  22. Henderson, L.M., Moule, S.K. and Chappell, J.B., 1993, The immediate activator of the NADPH oxidase is arachidonate not phosphorylation, Eur. J. Biochem. 211, 157–162.PubMedCrossRefGoogle Scholar
  23. Hunter, M.J. and Chazin, W.J., 1998, High level expression and dimer characterization of the S100 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14, J. Biol. Chem. 273, 12427–12435.PubMedCrossRefGoogle Scholar
  24. Jurivich, D., Sistonen, L., Sarge, K. and Morimoto, R., 1994, Arachidonate is a potent modulator of human heat shock gene transcription, Proc. Natl. Acad. Sci. USA 91, 2280–2284.PubMedCrossRefGoogle Scholar
  25. Kamp, F. and Hamilton, J.A., 1993, Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers, Biochemistry 32, 11074–11085.PubMedCrossRefGoogle Scholar
  26. Klempt, M., Melkonyan, H., Nacken, W, Wiesmann, D., Holtkemper, U. and Sorg, C., 1997, The heterodimer of the Ca2+-binding proteins MRP8 and MRP14 binds arachidonic acid, FEBS Lett. 408, 81–84.PubMedCrossRefGoogle Scholar
  27. Kligman, D. and Hilt, D.C., 1988. The S100 protein family, Trends Biochem. Sci. 13, 437–443.PubMedCrossRefGoogle Scholar
  28. Kragballe, K. and Voorhees, J.J., 1987, Eicosanoids in psoriasis-15-HETE on the stage, Dermatologica 174, 209–213.PubMedCrossRefGoogle Scholar
  29. Lackmann, M., Rajasekariah, P., Iismaa, S.E., Jones, G., Cornish, C.J., Hu, S.P., Simpson, R.J., Moritz, R.L. and Geczy, C.L., 1993, Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10, J. Immunol. 150, 2981–2991.PubMedGoogle Scholar
  30. Lambeau, G. and Lazdunski, M., 1999, Receptors for a growing family of secreted phospholipases A2, Trends Pharmacol. Sci. 20, 162–170.PubMedCrossRefGoogle Scholar
  31. Lampe, M.A., Williams, M.L. and Elias, P.M., 1983, Human epidermal lipids: Characterization and modulation during differentiation, J. Lipid Res. 24, 131–140.PubMedGoogle Scholar
  32. Le, M., Schalwijk, J., Siegenthaler, G., van de Kerkhof, P.C., Veerkamp, J.H. and van de Valk, P.G., 1996, Changes in keratinocyte differentiation following mild irritation by sodium dodecyl sulphate, Arch. Dermatol. Res. 288, 684–690.PubMedCrossRefGoogle Scholar
  33. Lekholm, U. and Svennerholm, L., 1977, Lipid pattern and fatty acid composition of human palatal oral epithelium, Scand. J. Dent. Res. 85, 279–290.PubMedGoogle Scholar
  34. Madsen, P., Rasmussen, H.H., Leffers, H., Honoré, B., Dejgaard, K., Olsen, E., Kiil, J., Walbum, E., Andersen, A.H., Basse, B., Lauridsen, J.B., Ratz, G.P., Celis, A., Vanderkerckhove, J. and Celis, J.E., 1991, Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin, J. Invest. Dermatol 97, 701–712.PubMedCrossRefGoogle Scholar
  35. Masouyé, I., Hagens, G., van Kuppevelt, T.H., Madsen, R, Saurat, J.H., Veerkamp, J.H., Pepper, M.S. and Siegenthaler, G., 1997, Endothelial cells of the human microvasculature express epidermal fatty acid-binding protein (E-FABP), Circul. Res. 81, 297–303.CrossRefGoogle Scholar
  36. Menon, G.K., Price, L.F., Bommannan, B., Elias, P.M. and Feingold, K.R., 1994, Selective obliteration of the epidermal Ca2+-gradient leads to enhanced lamellar body secretion, J. Invest. Dermatol 102, 789–795.PubMedCrossRefGoogle Scholar
  37. Motta, S., Monti, M., Sesana, S., Mellesi, L., Ghidoni, R. and Caputo, R., 1994, Abnormality of the water barrier function in psoriasis. Role of ceramide fractions, Arch. Dermatol. 130, 452–456.PubMedCrossRefGoogle Scholar
  38. Ordway, R.W., Walsh, J.V. and Singer, J.J., 1989, Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells, Science 244, 1176–1179.PubMedCrossRefGoogle Scholar
  39. Passey, R.J., Xu, K., Hume, D.A. and Geczy, C.L., 1999, S100A8: Emerging functions and regulation, J. Leukocyte Biol. 66, 549–556.PubMedGoogle Scholar
  40. Proksch, E., Holleran, W.M., Menon, G.K., Elias, P.M. and Feingold, K.R., 1993, Barrier function regulates epidermal lipid and DNA synthesis, Br. J. Dermatol 128, 473–482PubMedCrossRefGoogle Scholar
  41. Ranimes, A., Roth, J., Goebeler, M., Klempt, M., Hartmann, M. and Sorg, C., 1997, Myeloidrelated protein (MRP) 8 and MRP 14, calcium-binding proteins of the S100 family are secreted by activated monocytes via a novel, tubulin-dependent pathway, J. Biol. Chem. 272, 9496–9502.CrossRefGoogle Scholar
  42. Rao, G.M., Baas, A., Glasgow, W., Eling, T., Runge, M. and Alexander, R., 1994, Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells, J. Biol. Chem. 269, 32586–32591.PubMedGoogle Scholar
  43. Robinson, N.A., Lapic, S., Welter, J.F. and Eckert, R.L., 1997, S100A11, S100A10, annexin I, desmosomal proteins, small proline-rich proteins, plasminogen activator inhibitor-2, and involucrin are components of the cornified envelope of cultured human epidermal keratinocytes, J. Biol Chem. 272, 12035–12046PubMedCrossRefGoogle Scholar
  44. Roth, J., Burwinkel, F., van den Bos, C., Goebeler, M., Vollmer, E. and Sorg, C., 1993, MRP8 and MRP14, S-100 like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner, Blood 82, 1875–1883.PubMedGoogle Scholar
  45. Roulin, K., Hagens, G., Hotz, R., Saurat, J.H., Veerkamp, J.H. and Siegenthaler, G., 1999, The fatty acid-binding heterocomplex FA-p34 formed by S100A8 and S100A9 is the major fatty acid carrier in neutrophils and translocates from the cytosol to the membrane upon stimulation, Exp. Cell Res. 247, 410–421.PubMedCrossRefGoogle Scholar
  46. Rys-Sikora, K.E. and Gill, D.L., 1996, The role of fatty acids within endoplasmic reticulum calcium pools, in Frontiers in Bioactive Lipids, Vanderhoek (ed.), Plenum Press, New York, pp. 31–38.CrossRefGoogle Scholar
  47. Schafer, B.W. and Heizmann, C.W., 1996, The S100 family of EF-hand Ca2+-binding proteins: Functions and pathology, Trends Biochem. Sci. 21, 134–140.PubMedGoogle Scholar
  48. Siegenthaler, G., Hotz, R., Chatellard-Gruaz, D., Didierjean, L., Hellman, U. and Saurat, J.H., 1994, Purification and characterization of the human epidermal fatty acid-binding protein: Localization during epidermal differentiation in vivo and in vitro, Biochem. J. 302, 363–371.PubMedGoogle Scholar
  49. Siegenthaler, G., Roulin, K., Chatellard-Gruaz, D., Hotz, R., Saurat, J.H., Hellman, U. and Hagens, G., 1997, A heterocomplex formed by the calcium-binding proteins MRP8 (S100A8) and MRP14 (S100A9) binds unsaturated fatty acids with high affinity, J. Biol. Chem. 272, 9371–9377.PubMedCrossRefGoogle Scholar
  50. Smith, W.L., 1992, Prostanoid biosynthesis and mechanisms of action, Am. J. Physiol. 263, 181–191.Google Scholar
  51. Soliven, G., Takeda, M., Shandy, T. and Nelson, D., 1993, Arachidonic acid and its metabolites increase Ca(i) in cultured rat oligodendrocytes, Am. J. Physiol. 264, 632–640.Google Scholar
  52. Squir, CA., Johnson, N.W. and Hackemann, M., 1975, Structure and Function of Normal Human Oral Mucosa in Health and Disease, Blackwell, Oxford.Google Scholar
  53. Teigelkamp, S., Bhardwaj, R.S., Roth, J., Meinhardus-Hager, G., Karas, M. and Sorg, C., 1991, Calcium-binding complex assembly of the myeloic differentiation proteins MRP8 and MRP14, J. Biol. Chem. 266, 13462–13467.PubMedGoogle Scholar
  54. van den Bos, C., Roth, J., Koch, H.G., Hartmann, M. and Sorg, C., 1996, Phosphorylation of MRP 14, an S100 protein expressed during monocytic differentiation, modulates Ca(2+)-dependent translocation from cytoplasm to membranes and cytoskeleton, J. Immunol. 156, 1247–1254.PubMedGoogle Scholar
  55. Veerkamp, J.H. and Maatman, R.G.H.J., 1995, Cytoplasmic fatty acid-binding proteins: their structure and genes, Progr. Lipid Res. 34, 17–52.CrossRefGoogle Scholar
  56. Wahli, W., Devchand, P.R., Ijpenberg, A. and Desvergne, B., 1999, Fatty acids, eicosanoids, and hypolipidemic agents regulate gene expression through direct binding to peroxisome proliferator-activated receptors, Adv. Exp. Med. Biol. 447, 199–209.PubMedCrossRefGoogle Scholar
  57. Zwaldo, G., Brüggen, J., Gerhards, G., Schlegel, R. and Sorg, C., 1988, Two calcium-binding proteins associated with specific stages of myeloid differentiation are expressed by subsets of macrophages in inflammatory tissues, Clin. Exp. Immunol. 72, 510–515.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerry Hagens
    • 1
  • Georges Siegenthaler
    • 1
  1. 1.Clinique de Dermatologie and DHURDVUniversity Hospital GenevaGenevaSwitzerland

Personalised recommendations