The Experiment CPLM (Comportamiento de Puentes Líquidos en Microgravedad) on Board Minisat 01

  • Angel Sanz-Andrés
  • Pablo Rodríguez-de-Francisco
  • Julián Santiago-Prowald


The Universidad Politécnica de Madrid participates in the MINISAT 01 program as the experiment CPLM responsible. This experiment aims at the study of the fluid behaviour in reduced gravity conditions. The interest of this study is and has been widely recognised by the scientific community and has potential applications in the pharmaceutical and microelectronic technologies (crystal growth), among others. The scientific team which has developed the CPLM experiment has a wide experience in this field and had participate in the performance of a large number of experiments on the fluid behaviour in reduced gravity conditions in flight (Spacelab missions, TEXUS sounding rockets, KC-135 and Caravelle aeroplanes, drop towers, as well as on earth labs (neutral buoyancy and small scale simulations). The experimental equipment used in CPLM is a version of the payload developed for experimentation on drop towers and on board microsatellites as the UPM-Sat 1, adapted to fly on board MINISAT 01.


Liquid Column Liquid Bridge Parabolic Flight Drop Tower Eccentric Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, J.I.D.: 1997, Drops, jets and bubbles, in: H.C. Kuhlmann and HJ. Rath (eds.), Free surface flows, Springer-Verlag.Google Scholar
  2. Bezdenejnykh, N.A., Meseguer, J. and Perales, J.M.: 1992, Experimental analysis of stability limits of capillary bridges, Phys. Fluids A 4, 677–680.ADSCrossRefGoogle Scholar
  3. Da Riva, I. and Martínez, L: 1979, Floating Zone Stability, ES A SP-142, pp. 67–73.Google Scholar
  4. Laverón, A. and Perales, J.M.: 1995, Equilibrium shapes of non-axisymmetric liquid bridges of arbitrary volume in gravitational fields and their potential energy, Phys. Fluids 7, 1204–1213.ADSMATHCrossRefGoogle Scholar
  5. Martínez, I.: 1978, Floating Zone. Equilibrium Shapes and Stability Criteria, Space Research XVIII, pp. 519–522.Google Scholar
  6. Martínez, I.: 1983, Stability of Axisymmetric Liquid Bridges, in: Materials Sciences under Micro-gravity, ESA SP-191, pp. 267–273.Google Scholar
  7. Martínez, I., Haynes, J.M. and Langbein, D.: 1987, Fluid Statics and Capillarity, in: H.U. Walter (ed.), Fluid Sciences and Materials Sciences in Space, Springer-Verlag.Google Scholar
  8. Martínez, I. and Perales, J.: 1986, Liquid Bridge Stability Data, J. Crystal Growth 78, pp. 369–378.ADSCrossRefGoogle Scholar
  9. Martínez, I., Perales, J.M. and Meseguer, J.: 1995, Stability of long liquid columns (SL-D2-FPM-STACO), in: PR. Sahm, M.H. Keller and B. Schiewe (eds.), Scientific Results of the German Spacelab Mission D-2, WPF, pp. 220–231.Google Scholar
  10. Martínez, I., Perales, J.M. and Meseguer, J.: 1996, Response of a Liquid Bridge to an Acceleration Varying Sinusoidally with Time, Lecture Notes in Physics 464, 271–282.ADSCrossRefGoogle Scholar
  11. Martínez, I. and Sanz, A.: 1985, Long liquid bridges aboard sounding rockets, ESA Journal 9, 323–328.Google Scholar
  12. Meseguer, J.: 1983, The breaking of axisymmetric slender liquid bridges, J. Fluid Mech. 130, 123–152.MathSciNetADSMATHCrossRefGoogle Scholar
  13. Meseguer, J., Slobozhanin, L.A. and Perales, J.M.: 1995a, A review on the stability of liquid bridges, Adv. Space Res. 16, 5–14.ADSCrossRefGoogle Scholar
  14. Meseguer, J., Bezdenejnykh, N.A., Perales, J.M. and Rodríguez de Francisco, P.: 1995b, Theoretical and Experimental Analysis of Stability Limits of Non-Axi symmetric Liquid Bridges, Microgr. Sci. Technol. 8, 2–9.Google Scholar
  15. Meseguer, J., Bezdenejnykh, N.A. and Rodríguez de Francisco, P.: 1996, On the use of liquid bridges as accelerometers, Microgr. Sci. Technol. 9, 62–69.Google Scholar
  16. Nicolas, J.A., Rivas, D. and Vega. J.M.: 1997, The interaction of thermocapillary convection and low-frequency vibration in nearly-inviscid liquid bridges, Zeitschrift-fur-Angewandte-Mathematik-und-Physik, 48, 389–423.MathSciNetADSMATHCrossRefGoogle Scholar
  17. Nicolas, J.A. and Vega. J.M.: 1996, Weakly nonlinear oscillations of nearly inviscid axisymmetric liquid bridges, J. Fluid Mech. 328, 95–128.ADSMATHCrossRefGoogle Scholar
  18. Perales, J.M. and Meseguer, J.: 1992, Theoretical and Experimental Study of the Vibration of Axisymmetric Viscous Liquid Bridges, Phys. Fluids A 4, 1110–1130.ADSCrossRefGoogle Scholar
  19. Perales, J.M., Sanz, A. and Rivas, D.: 1990, Eccentric Rotation of a Liquid Bridge, Appl. Microgr. Tech. 2, 193–197.Google Scholar
  20. Santiago-Prowald, J., Reina-Barragan, F.J., Sanz-Andrés, A. and Muñoz-Sevilla, L.: 1998, Calibration of accelerometers for the measurement of microvibrations, J. Spacecraft and Rockets 35, No. 5, 695–702.ADSCrossRefGoogle Scholar
  21. Sanz, A.: 1985, The influence of the outer bath in the dynamics of axisymmetric liquid bridges, J. Fluid Mech. 156, 101–140.ADSMATHCrossRefGoogle Scholar
  22. Sanz, A. and López-Díez, J.: 1989, Non axisymmetric oscillations of liquid bridges, J. Fluid Mech. 205, 503–521.ADSCrossRefGoogle Scholar
  23. Sanz, A., Perales, J.M. and Rivas, D.: 1992, Rotational Instability of a Long Liquid Column, in: Final Reports of Sounding Rocket Experiments in Fluid Science and Materials Sciences, ESA SP-1132, Vol. 2, pp. 8–21.Google Scholar
  24. Slobozhanin, L.A. and Alexander, J.I.D.: 1998, Combined effect of disc inequality and axial gravity on axisymmetric liquid bridge stability, Phys. Fluids 10, 2473–2488.ADSCrossRefGoogle Scholar
  25. Slobozhanin, L.A., Alexander, J.I.D. and Resnick, A.H.: 1997, Bifurcation of the equilibrium states of a weightless liquid bridge, Phys. Fluids 9, 1893–1905.MathSciNetADSCrossRefGoogle Scholar
  26. Slobozhanin, L.A., Gômez, M. and Perales, J.M.: 1995, Stability of Liquid Bridges between Unequal Disks under Zero-Gravity Conditions, Microgr. Sci. Technol. 8, 23–34.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Angel Sanz-Andrés
    • 1
  • Pablo Rodríguez-de-Francisco
    • 1
  • Julián Santiago-Prowald
    • 1
  1. 1.Instituto Universitario ‘Ignacio Da Riva’ (IDR/UPM)Universidad Politécnica de MadridMadrid

Personalised recommendations