Significance to Astrobiology of Micro-Organisms in Permafrost and Ice

  • Richard B. Hoover
  • David Gilichinsky
Part of the NATO Science Series book series (ASEN2, volume 76)

Abstract

Astrobiology is a newly emerging multidisciplinaiy field concerned with the limitations and distribution of life on Earth and in the Cosmos. The discovery of chemical and mineral biomarkers and possible microfossils in the Allen Hills meteorite (ALH84001) indicated that microbial life may have existed on Mars more than 3 billion years ago. Meteorites on Earth that have come from the moon and Mars (SNC meteorites) establish that impact ejection processes can result in the transplanetary transfer of astromaterials. It is now widely recognized that the transfer of cometary water, organics, and volatiles to early Earth and the impact synthesis of organics may have played a significant role in the Origin of Life on Earth, by Chyba and Sagan, in 1992 [12]; Murnma in 1996[41]; Delsemme in 1997 [13]; Oro et al in 1980 [45]. New results by Mosjis and Arrhenius in 1996 [40] indicate that microbial life has existed on Earth for the past 3.5 billion years. Over the eons, deep impacts of asteroids, comets and meteorites could have ejected large quantities of debris into space from planets or frozen moons. It is now clear that ancient Earth (and possibly even ancient Mars) was teeming with microbial life. Ejecta from marine sediments, permafrost, deep crustal rocks or polar ice must have contained biominerals, organic chemicals, microfossils, and perhaps even intact cells and cryopreserved viable microorganisms. The possibility of biological cross contamination of other planets, moons, comets, and the parent bodies of meteorites can not be excluded. The long held paradigm that Earth represents a closed ecosystem must be re-examined.

Keywords

Boron Sandstone Polycyclic Aromatic Hydrocarbon Bacillus Drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abyzov, S.S., Bobin, N.E., and Koudryashov, B.B. (1979) “Microbiological flora as a function of ice depth in central Antarctica.” in Life Sciences and Space Research, R. Holmquist, Pergamon Press, Oxford, pp. 99–103.Google Scholar
  2. 2.
    Abyzov, S.S., Philippova, S.N., and Kuznetsov, V.D. (1983) “Nocardiopsis antarcttcus — a new species of Actinomyces isolated from the ice sheet of the central Antarctic glacier” (in Russian, with English summary). Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya (4), pp. 559–569.Google Scholar
  3. 3.
    Abyzov, S.S. (1993) “Microorganisms in the Antarctic Ice.” Antarctic Microbiology, ed. by E.I. Friedmann, Willey-Liss Inc., New York. pp. 265–295Google Scholar
  4. 4.
    Abyzov, S.S., Barkov, N.I., Chistiakov, V.K., and Kotlyakov, V.M.. (1995) “International effort helps decipher mysteries of paleoclimate from Antarctic ice cores.” EOS, V. 76, N17, pp. 168–171.Google Scholar
  5. 5.
    Abyzov, S.S., Mitskevich, I.N., Poglazova, M.N., Barkov, M.N., Lipenkov, V.Ya., Bobin, N.E., Koudryashov, B.B., and Pashkevich, V.M. (1998) “Antarctip ice sheet as a model in search of Life on other planets.” Report to 31st COSPAR meeting, Birmingham, England, 14-21 July 1996. Published in Advances in Space Research 22 N3, pp. 363–368, Pergamon Press.Google Scholar
  6. 6.
    Abyzov, S.S., Mitskevich, I.N., Poglazova, M.N., Barkov, N.I., Lipenkov, V.Ya., Bobin, N.E., Koudryashov, B.B., and Pashkevich, V.M. (1998) “Long-term conservation of viable microorganisms in ice sheet of Central Antarctica,” in Instruments, Methods and Missions for Astrobiology, ed. by R.B. Hoover, 20-22 July 1998, pp. 75–84. San Diego, California.Google Scholar
  7. 7.
    Benoh, P. H. and Taunton, A. E. (1997). “The Challenge of Remote Exploration for Extraterrestrial Life” Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, (R. B. Hoover, Ed), Proc. SPIE, 3111, 98–108.Google Scholar
  8. 8.
    Boston P.J., Ivanov, M.V., and McKay, CP. (1992) “On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars.” ICARUS 95, pp. 300–308.CrossRefGoogle Scholar
  9. 9.
    Broady, P. A. (1979a) “Wind Dispersal of Terrestrial Algae at Signy Island, South Orkney Islands.” British Antarctic Survey Bulletin, 48, pp. 99–102.Google Scholar
  10. 10.
    Broady, P. A. (1979b) “The Signy Island terrestrial reference sites: DC. The Ecology of the Algae of Site 2, a moss carpet” British Antarctic Survey Bulletin, 47, pp. 13–30.Google Scholar
  11. 11.
    Broady, P. A. (1982) “Ecology of non-marine algae at Mawson Rock, Antarctica” Nova Hedwigia, 36, pp. 209–229.Google Scholar
  12. 12.
    Chyba, C. F., and Sagan, C. (1992) “Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: An inventory for the origins of life”, Nature 355, pp. 125–131.CrossRefGoogle Scholar
  13. 13.
    Delsemme, A.H. (1992) “Cometary origin of carbon, nitrogen, and water on the Earth”, Orig. of Life 21,279–298.CrossRefGoogle Scholar
  14. 14.
    Fogg, G.E. (1967) “Observations of Snow Algae of the South Orkney Islands.” Phil. Trans. Royal. Soc. London, B252,279–87.Google Scholar
  15. 15.
    Folk, R. L., (1993) “SEM Imaging of bacteria and nannobacteria in carbonate sediments and rocks”, Journal of Sedimentary Petrology 63, pp. 990–999Google Scholar
  16. 16.
    Folk, R.L. and Lynch, F. L. (1997). “The possible role of nannobacteria (dwarf bacteria) in clay mineral diagenesis and the importance of careful sample preparation in high magnification SEM study”, Journal of Sedimentary Research 67, pp. 597–603Google Scholar
  17. 17.
    Frederickson, J.K., Garland, T.R., Hicks, R.J., Thomas, J., Li, S., and McFadden, K. (1989) “Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties.” Geomicrobiol. J. 7, pp. 53–66.CrossRefGoogle Scholar
  18. 18.
    Frederickson, J.K., & Onstott, T.C. (1996) “Microbes deep inside the Earth,” Scientific American 275, pp. 68–73.CrossRefGoogle Scholar
  19. 19.
    Friedmann, I., Gilichinsky, D.A., Wilson, G.S., Ostroumov, V., Vorobyova, E.A., Soina, V.S., Shcherbakova, V.A., Vishnivetskaya T.A., Chanton, J.P., Friedmann, R.O., McKay, CP. and Rivkina E. (1996). Viable bacteria, methane and high ice content in Antarctica permafrost: relevance to Mars. 8th ISSM Meeting. 11th Int. Conf. of the Origin of Life. Orleans, July 5-12, Abstr. 5-1,60.Google Scholar
  20. 20.
    Friedmann. I., (1994). “Permafrost as Microbial Habitat.” In Viable Microrganisms in Permafrost, (D. Gilichinsky, Ed.) Russian Academy of Sciences, pp. 21–26.Google Scholar
  21. 21.
    Gerasimenko, L.M., Hoover, R. B., Rozanov, A. Yu., Zhegallo, E. A., and Zhmur, S.I. (1999). “Bacterial Paleontology and Studies of Carbonaceous Chondrites.” Paleontologicheski Zhurnal, 4 pp. 103–125. (In Russian).Google Scholar
  22. 22.
    Gerasimenko, L.M., Goncharova, I.V., Zhegallo, E.A., Zavarzin., G.A., Zaitseva, L.V., Orleansky, V.K, Rozanov, A. Yu., and Ushatinskaya, G. T., (1996).“Filamentous Cyanobacteriae: The.Process of Their Mineralization (Phosphatization)”, Litologia iPoleznye Iskopaemye, No.2, pp. 208–214.Google Scholar
  23. 23.
    Gilichinsky, D.A., Vorobyova, E.A, Erokhina, L.G., Fedorov-Davydov, D.G. and Chaikovskaya, N.R. (1992). Long-term preservation of microbial ecosystems in permafrost Adv. Space Res. 12, pp. 255–263.CrossRefGoogle Scholar
  24. 24.
    Gilichinsky, D., Wegener, S., and Vishnivetskaya, T. (1995) “Permafrost Microbiology.” Permafrost and Periglacial Processes 2, pp. 281–291.CrossRefGoogle Scholar
  25. 25.
    Gilichinsky, D. A. (1997) “Permafrost as a microbial habitat: extreme for the Earth, favorable in Space”, Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, (R. B. Hoover, Ed.), Proc. SPIE, 3111, pp. 472–481.Google Scholar
  26. 26.
    Gilichinsky, D. A., Wegener, S., and Vishnivetskaya, T., “Permafrost Microbiology”, Permafrost and Periglacial Processes, 2, pp. 281–291, 1995.Google Scholar
  27. 27.
    Gold, T. (1992) “The deep hot biosphere.” Proc. Natl. Acad. Science, USA 49, pp. 6045–6049.CrossRefGoogle Scholar
  28. 28.
    Hendey, N. Ingram (1964) “An Introductory Account of the Smaller Algae of the British Coastal Waters, Part V: Bacillariophyceae (Diatoms), London: Her Majesty’s Stationery Office, p. 145.Google Scholar
  29. 29.
    Hoflman B., and Farmer, J.D. (1997) “Microbial fossils from terrestrial subsurface hydrothermal environments: examples and implications from Mars.” in (Clifford, S.M., Trieman, A.H., Newsom, H.E., and Farmer, J.D., eds.) Geologic and Hydrologie Evolution, Physical and Chemical Environments, and the Implications for Life, Lunar Planetary Institute (Houston), Contribution 916, pp. 40–42.Google Scholar
  30. 30.
    Hoover, R.B., Hoyle, F., Wickrarnasinghe, N.C., Hoover, M. J., and AI-Mufti, S. (1985). “Diatoms on Earth, Comets, Europa and in Interstellar Space.” Earth, Moon and Planets pp. XX–XX.Google Scholar
  31. 31.
    Hoover, R.B., Hoyle, F., Wallis, M. K., and Wickramasinghe, N.C. (1986). “Can Diatoms Live on Cometary Ice,” in Asteroids, Comets, Meteors II. Proceedings of Meeting at Astronomical Observatory of Uppsala University, June, 1985. (C. I. Lagerkvist, Ed.) pp. 359–362.Google Scholar
  32. 32.
    Hoover, R.B., (1997). “Meteorites, Microfossils, and Exobiology,” Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, (R. B. Hoover, Ed.), Proc. SPIE, 3111, pp. 115–136.Google Scholar
  33. 33.
    Hoover, R.B., Rozanov, A.Yu., Zhmur, S.I., Gorlenko, V.M., (1998). “Further Evidence of Microfossils in Carbonaceous Condrites.” Instruments, Methods, and Missions forAstrobiology, (R. B. Hoover, Ed), Proc. SPIE, 3441, pp. 203–213.Google Scholar
  34. 34.
    Hoshiai, T. (1977) “Seasonal change of ice communities in the sea ice near Syowa Station. Antarctica.” In Polar Oceans, ed M. J. Dunbar, pp. 307–17, Canada: Arctic Institute of North America.Google Scholar
  35. 35.
    Ivanov, M.V., and Lein, A.Yu.. (1995) “Biogeochemical evidence of microbial activity on Mars.” Adv. Space Res. 15, No.3, pp. 215–221.CrossRefGoogle Scholar
  36. 36.
    Kajander, E.O., Kuronen, I., Akerman, K.K., Pelttari, A., and Ciftcioglu, N., (1997) “Nanobacteria from blood, the smallest curturable autonomously replicating agent on Earth,” Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, (R. B. Hoover, Ed), Proc. SPIE 3111, pp. 420–35.Google Scholar
  37. 37.
    Kieft, T.L., “Dwarf cells in soil and subsurface terrestrial environments”, (R. R. Colwell, and D. J. Grimes, Eds.), Chapman and Hall, New York.Google Scholar
  38. 38.
    Mautner, M.N., Leonard, R.L., and Deamer, D.W. (1995) “Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization.” Planet Space Sci. 43, pp. 139–147.CrossRefGoogle Scholar
  39. 39.
    McKay, D.S, Gibson, Jr., E.K, Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, CR., and Zare, R.N., (1996) “Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001”, Science 273, pp. 924–930.CrossRefGoogle Scholar
  40. 40.
    Mojzsis, S.L., Arrhenius, G., Keegan, KD., Harrison, T.M., Nutman, A.P., and Friend, C.R.L., (1996) “Evidence for life on Earth before 3,800 million years ago”, (1996) Nature, 384, pp. 55–59.CrossRefGoogle Scholar
  41. 41.
    Mumma, M.K. “Organics in Comets” (1997), in Astronomical and Biochemical Origins and the Search for Life in the Universe. Proceedings 5th International Conference on Bioastronomy, July 1–5, 1996, Capri, (C. B. Cosmovici, S. Bowyer and D. Werthimer, Eds.), IAU Colloquium No. 161, pp. 121–143.Google Scholar
  42. 42.
    Olson, G. J., Dockins, W. S., and McFeathers, G. A. (1981) “Sulfate reducing and methanogenic bacteria from deep aquifers in Montana.” Geomicrobiol. J. 2, pp. 327–340.CrossRefGoogle Scholar
  43. 43.
    Onstott, T.C., Tobin, K., Dong, H., DeFlaun, M.F., Frederickson, J.K., Bailey, T., Brockman, F., Kieft, T., Peacock, A., White, D.C, Blackwill, D., Phelps, T.J., and Boone, D.R. (1997) “The deep gold mines of South Africa: Windows into the subsurface biosphere.” in Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, (R. B. Hoover, Ed.), Proc. SPIE 3111, pp. 344–357.Google Scholar
  44. 44.
    Onstott, T.C., Tseng, H-Y, Phelps, T.J., Colwell, F.S., Ringelberg, D., White, D.C., Boone, D.R., McKinley, J.P., Stevens, T.O., Long, P.E., Balkwill, D., Riciputi, L.R., Caro, A., Pratt, L.M., Swenson, J., and Person, M. “The long-term survival of deep-dwelling bacteria in the Triassic rift basin.” Earth and Planet Science Letters.Google Scholar
  45. 45.
    Oro, J., Holzer, G., and Lazcano-Araujo, A. (1980) “The contribution of cometary volatiles to the primitive Earth.” in Cospar Life Sciences and Space Research, (R. Holmquist, Ed) XVII, Pergamon Press, Oxford, pp. 67–82.Google Scholar
  46. 46.
    Parker, B. C, Simmons, G. M., and Wharton, R. A. (1982) “Removal of Organic and Inorganic matter from Antarctic Lakes byaerial escape of blue green algal mats” Journal of Phycology, 18, pp. 72–78.CrossRefGoogle Scholar
  47. 47.
    Pedersen, K. (1993) “The deep subterranean biosphere.” Earth Science Reviews. 34, 243–260.CrossRefGoogle Scholar
  48. 48.
    Pedersen K., and Ekendahl, S. (1990) “Distribution and activity of bacteria in deep granitic groundwaters of southern Sweden.” Microb. Ecol. 22, pp. 1–14.Google Scholar
  49. 49.
    Rozanov, A.Yu. and Zavarzin, G.A. (1998). “Bacterial Paleontology”, Instruments, Methods, and Missions for Astrobiology, (R. B. Hoover, Ed.), Proc. SPIE, 3441, pp. 218–225.Google Scholar
  50. 50.
    McKay, D.A, Rozanov, A Yu., Hoover, R.B., and Westall, F., (1998). “Phosphate Biomineralization of Cambrian Microorganisms”, Instruments, Methods, and Missions for Astrobiology, (R. B. Hoover, Ed), Proc. SPIE, 3441, pp. 170–177.Google Scholar
  51. 51.
    Shi, T., Reeves, R.H., Gilichinsky, D.A. and Friedmann, E.I. (1997). Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology. 33:169–179.CrossRefGoogle Scholar
  52. 52.
    Soina, V.S. and Vorobyova E.A (1995). Preservation of cell structures in permafrost: a model for exobiology. Adv. Space Res. 15, pp. 237–242.CrossRefGoogle Scholar
  53. 53.
    Soina, V.S. and Vorobyova E.A. (1996). Role of cell differentiation in high resistance of prokaryotes to cryoconservation in permafrost. Adv. Space Res. 18, p. 12.CrossRefGoogle Scholar
  54. 54.
    Soina, V.S., McGrath, J., Roseveld, S. Application of Environmental Scanning Microscopy to studies of Microorganisms in Permafrost subterranean Sediments. Geomicrobiology (in press).Google Scholar
  55. 55.
    Stevens, T.O., and McKinley, J.P. (1995) “Lithoautotrophic microbial ecosystems in deep basalt aquifers.” Science 270, pp. 450–454.CrossRefGoogle Scholar
  56. 56.
    Taunton (1997) Conference on Early Mars: Geologic and hydrologie evolution, physical and chemical environments, and the implications for life, Lunar and Planetary Science Institute Contribution No. 916, 76–77.Google Scholar
  57. 57.
    Vainshtein, M., Suzina, N., and Sorokin, V. (1997) “A new type of magnet-sensitive inclusions in cells of photosynthetic purple-bacteria,” System. Appl Microbiol, 20, pp. 182–86.CrossRefGoogle Scholar
  58. 58.
    Vainshtein M., Kudryashova, E., Suzina, N., Ariskina, E., and Sorokin, V., (1998) “On functions of non-crystal magnetosomes in bacteria”, Instruments, Methods, and Missions for Astrobiology, (R. B. Hoover, Ed), Proc. SPIE, 3441, pp. 280–289.Google Scholar
  59. 59.
    Vainshtein, M., Kudryashova, E., Suzina, N., Ariskina, E., Voronkov, V., (1998). “Formation of Bacterial Nanocells”, Instruments, Methods, and Missions for Astrobiology, (R. B. Hoover, Ed), Proc. SPIE 3441, pp 95–105.Google Scholar
  60. 60.
    Vorobyova, E.A., Soina, V.S. and Mulukin A.L. (1996). Microorganisms and enzyme activity in permafrost after removal of long-term cold stress. Adv. Space Res. 18, pp. 103–108.CrossRefGoogle Scholar
  61. 61.
    Vorobyova, E.A, (1998), Private Communication.Google Scholar
  62. 62.
    Warwick, Vincent E. (1997) “Microbial Ecosystems of Antarctica”, Cambridge University Press, Cambridge, 304 pages.Google Scholar
  63. 63.
    Wharton, R. A., Vinyard, W. C, Parker, B. C, Simmons, G. M., and Seaburg, K. G. (1981) Algae in Cryoconite Holes on Canada Glacier in Southern Victoria Land, Antarctica, Phycologia, 20, 208–211.CrossRefGoogle Scholar
  64. 64.
    Wharton, R. A., Parker, B. C, and Simmons, G. M. (1983) “Distribution, species, composition and morphology of algal mats (stromatolites) in Antarctic Dry Valley Lakes” Phycologia, 22, 355–365.CrossRefGoogle Scholar
  65. 65.
    Wharton, R. A., McKay, C. P., Simmons, G. M., and Parker, B. C, (1985) “Cryoconite holes on glaciers” Bioscience, 35, 499–503.CrossRefGoogle Scholar
  66. 66.
    Wilson, A. T. (1965) “Escape of Algae from Frozen Lakes and Ponds” Ecology, 46, 376.CrossRefGoogle Scholar
  67. 67.
    Zhegallo, E.A, Rozanov, A.Yu., and Ushatinskaya, G., (1998). “Role of the Bacterial Communities in the Old Phosphrite Accumulation”, Instruments, Methods, and Missions for Astrobiology, (R. B. Hoover, Ed), Proc. SPIE, 3441, pp. 183–187.Google Scholar
  68. 68.
    Zhegallo, E.A, Rozanov, A.Yu., Ushatinskaya, G.T, Hoover, R.B., Gerasimenko, L.M., and Ragozina, A.L., (1999). “Atlas of Microorganisms in Ancient Phosphorites of Khubsugul (Mongolia)”, NASA Special Publication (In Press)Google Scholar
  69. 69.
    Zhmur, S.I., Rozanov, A.Yu., and Gorlenko, V.M., (1997). “Lithified Remnants of Microorganisms in Carbonaceous Chondrites,” Geochemistry International, 35, pp. 58–60.Google Scholar
  70. 70.
    Zuber, M. T., et al., (1998). “Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter”, Science, 282, pp. 2053–2060.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Richard B. Hoover
    • 1
  • David Gilichinsky
    • 2
  1. 1.Astrobiology Group LeaderSpace Sciences Laboratory/ES82 NASA/Marshall Space Flight CenterHuntsvilleUSA
  2. 2.Institute of Soil Science and PhotosynthesisRussian Academy of SciencesPushchinoRussia

Personalised recommendations