Skip to main content

Theory of Cavity Solitons

  • Chapter
Soliton-driven Photonics

Part of the book series: NATO Science Series ((NAII,volume 31))

Abstract

The existence and dynamical and other properties of cavity solitons are reviewed. These are bright, stable, non-diffracting spots of light in a driven optical cavity. The cavity must contain a nonlinear medium, but cavity solitons are supported by many media which do not support ordinary (propagating) spatial solitons. We use the Kerr cavity as a first example to describe methods to find them and analyse their stability. We demonstrate a sizeable domain of stability of two-dimensional cavity solitons in a Kerr cavity. Some other cavity soliton systems are briefly described. We show that cavity solitons have properties interesting for applications to optical information processing. Semiconductor microresonators are particularly promising, and we outline some results from models of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lugiato, L.A. (editor) (1994) Special issue on “Nonlinear Optical Systems, Chaos, Noise”, Chaos, Solitons & Fractals 4, 1251.

    Google Scholar 

  2. McLaughlin, D.W., Moloney, J.V. & Newell, A.C. (1983}; Phys. Rev. Lett., 51, 75. See also Moloney, J.V. & Newell, A.C. (1992) Nonlinear Optics, (Addison-Wesley, Redwood City), Fig. 5.16, p225.

    Article  ADS  Google Scholar 

  3. Rosanov, N.N & Khodova, G.V., (1988) Opt. Spektrosk. 65, 1375; (1990) J. Opt. Soc. Am. B, 7, 1065.

    Google Scholar 

  4. McDonald, G.S. & Firth, W.J. (1990) J. Opt. Soc. Am. B, 7, 1328.

    Article  ADS  Google Scholar 

  5. Wabnitz, S. (1993) Opt. Lett. 18, 601.

    Article  ADS  Google Scholar 

  6. McDonald, G.S. and Firth, W.J. (1993) J. Opt. Soc. Am. B 10, 1081.

    Article  ADS  Google Scholar 

  7. Tlidi, M., Mandel, P. and Lefever, R. (1994) Phys. Rev. Lett. 73, 640.

    Article  ADS  Google Scholar 

  8. Firth, W.J. and Scroggie, A.J. (1996) Phys. Rev. Lett. 76, 1623.

    Article  ADS  Google Scholar 

  9. Firth, W.J. and Lord, A. (1996) J. Mod Optics 43, 1071.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Firth, W.J., Lord, A. and Scroggie, A.J. (1996) Phys. Scripta T67, 12.

    Article  ADS  Google Scholar 

  11. Brambilla, M., Lugiato, L.A. and Stefani, M. (1996) EuroPhys. Lett. 34, 109.

    Article  ADS  Google Scholar 

  12. Tlidi, M and Mandel, P. (1996) Chaos, Solitons and Fractals 4, 1415.

    Google Scholar 

  13. Scroggie, A.J., Firth, W.J., McDonald, G.S., Tlidi, M., Lefever, R. and Lugiato, L.A. (1996) Chaos, Solitons and Fractals 4, 1323.

    Article  ADS  Google Scholar 

  14. Longhi, S. (1996) Opt. Lett. 21, 860.

    Article  ADS  Google Scholar 

  15. Steinmeyer, G., Schwache, A. and Mitschke, F. (1996) Phys. Rev. E53, 5399.

    ADS  Google Scholar 

  16. Weiss, C.O. et al, ESPRIT LTR Project 21112 PASS: Report: Kuszeliwicz R. et al, (1999) ESPRIT LTR Project 28235 PIANOS (www.pianos-int.com).

  17. Brambilla, M., Lugiato, L.A., Prati, F., Spinelli, L. and Firth, W.J. (1997}; Phys. Rev. Lett. 79, 2042.

    Article  ADS  Google Scholar 

  18. Spinelli, L., Tissoni, G., Brambilla, M., Prati, F. and Lugiato, L.A. (1998) Phys. Rev. A58, 2542.

    ADS  Google Scholar 

  19. Geddes, B. and Firth, W.J. (1994) Opt. Commun. 111, 623.

    Article  ADS  Google Scholar 

  20. Etrich, C., Peschel, U. and Lederer, F. (1997) Phys. Rev. Lett. 79, 2454.

    Article  ADS  Google Scholar 

  21. Michaelis, D., Peschel, U.and Lederer, F. (1997) Phys. Rev. A56, R3366.

    ADS  Google Scholar 

  22. Staliunas, K. and Sanchez-Morillo, V.J. (1997) Opt. Commun. 139, 306.

    Article  ADS  Google Scholar 

  23. Tlidi, M., Mandel, P. and Haelterman, M. Phys. Rev. E56, 6524.

    Google Scholar 

  24. Coen, S., Tlidi, M., Emplit, P. and Haelterman, M. (1999) Phys. Rev. Lett. 83, 2328: Coen, S. and Haelterman, M. (1997) Phys. Rev. Lett. 79, 4139.

    Article  ADS  Google Scholar 

  25. Skryabin, D.V. and Firth, W.J. (1999) Opt. Lett. 24 1026: Skryabin, D.V. (1999) Phys. Rev. E60, R3508.

    Article  ADS  Google Scholar 

  26. Barashenkov, I.V., and Zemlyanaya, E.V. (1999) Phys. Rev. Lett. 83, 2568.

    Article  ADS  Google Scholar 

  27. Tlidi, M. and Haelterman, M. (1998) PINOS Euroconference (unpublished).

    Google Scholar 

  28. Firth, W.J. and Harkness, G.K. (1998) Asian Journal of Physics 7, 665.

    Google Scholar 

  29. Weiss, C.O., Slekys, G., Staliunas, K., Taranenko, V. and Kuszeliwicz, R. (2001) in Spatial Solitons, (Trillo, S. and Torreulas, W.M., eds.) Berlin: Springer Verlag.

    Google Scholar 

  30. Taranenko, V., Weiss, C.O., Ganne, I., and Kuszeliwicz, R., (2000)) Phys. Rev., A61, 3818.

    Google Scholar 

  31. Gibbs, H.M. (1985) Optical Bistability.-Controlling Light with Light, (Academic Press).

    Google Scholar 

  32. Lugiato, L.A. (1984) Progress in Optics (Wolf. E, ed.), XXI 69 (North Holland).

    Google Scholar 

  33. Firth, W.J. and Galbraith, I. (1985) IEEE J. Quant Elec QE-21, 1399.

    Article  ADS  Google Scholar 

  34. Pomeau, Y. (1986) Phys.ica D 23, 3.

    Article  ADS  Google Scholar 

  35. Coullet, P et al. (2000) Phys. Rev. Lett., 84, 3069.

    Article  ADS  Google Scholar 

  36. Rosanov, N.N. (1996) Progress in Optics (Wolf. E, ed.), XXXV, 1.

    Google Scholar 

  37. Rosanov, N.N., Fedorov, S.V. and Khodova, G.V. (1995) J. Exp Theor Phys., 107, 376; Rosanov, N.N., Fedorov, S.V. and Khodova, G.V. (1996) Phys.ica D. 96, 272.

    Google Scholar 

  38. Bazhenov, V.Yu., Taranenko, V.B. and Vasnetsov, M.V. (1992) Proc. SPIE 1840, 183; Taranenko, V.B., Staliunas, K. and Weiss, C.O. (1997) Phys. Rev.. A56, 1582.

    Article  ADS  Google Scholar 

  39. Saffman, M., Montgomery, D. and Anderson, D.Z. (1994) Opt. Lett., 19, 518.

    Article  ADS  Google Scholar 

  40. Newell, A.C. (1987) Solitons in Mathematics and Physics, (Philadelphia: SIAM).

    Google Scholar 

  41. Lugiato, L.A. and Lefever, R. (1987) Phys. Rev. Lett. 58, 2209.

    Article  ADS  Google Scholar 

  42. Dunlop, A.M., Firth, W.J. and Wright, E.M. (1997) Opt. Commun. 138, 211

    Article  ADS  Google Scholar 

  43. Dunlop, A.M., Firth, W.J. and Wright, E.M. (2000) Opt. & Quant. Elec. 32, 1131.

    Article  Google Scholar 

  44. Lugiato, L.A. and Oldano C. (1988) Phys. Rev., A37, 3898.

    MathSciNet  ADS  Google Scholar 

  45. Scroggie, A.J. and Firth, W.J. (1994) EuroPhys. Lett., 26, 521.

    Article  ADS  Google Scholar 

  46. Maggipinto, T., Brambilla, M., Harkness, G.J. and Firth, W.J. (2000) Phys. Rev. E62, 8726.

    ADS  Google Scholar 

  47. Schäpers, B., Feldmann, M., Ackemann, T., and Lange, W. (2000) Phys. Rev. Lett. 85, 748.

    Article  ADS  Google Scholar 

  48. Schreiber, A, Thilring B, Kreuzer, M., and Tschudi, T. (1997) Opt. Commun. 136, 415: Neubecker R., Oppo G-l., Thuering B., Tschudi T., (2000)) Phys. Rev., A52, 791.

    Article  ADS  Google Scholar 

  49. Firth, W.J. (2000) SPIE 4016, 388.

    Article  ADS  Google Scholar 

  50. Siegman, A.E. (1986) Lasers, (Mill Valley: University Science Books).

    Google Scholar 

  51. Tissoni, G., Spinelli, L., Brambilla, M., Maggipinto, T., Perrini, I. and Lugiato, L.A. (1999) J. Opt. Soc. Am. B 16, 2083–2094.

    Article  ADS  Google Scholar 

  52. Gallego, R., San Miguel, M. and Toral, R. (2000) Phys. Rev. E61, 2241: Sanchez-Morcillo V.J., Perez-Arjona I., Silva F. de Valcarcel G.J., Roldan E., (2000) Opt. Lett. 25 957.

    ADS  Google Scholar 

  53. Oppo, G-L., Scroggie, A.J. and Firth, W.J., (1999) J. Opt B: Quant. & Semiclass. Opt. 1 133: Le Berre, M., Leduc, D., Ressayre E., and Tallet, A. (1999) J. Opt. B: Quant. & Semiclass. Opt. 1 153: Oppo, G-L, Scroggie, A.J., Sinclair, S., and Brambilla, M., (2000) J. Mod. Opt. 47 2005.

    Article  ADS  Google Scholar 

  54. Michaelis, D., Peschel, U., Lederer, F., Skryabin, D.V. and Firth, W.J. (2001) Phys. Rev. E, inpress.

    Google Scholar 

  55. Dalfovo F., Giorgini S., Pitaevskii L.P., (1999) Rev. Mod. Phys. 71 463.

    Article  ADS  Google Scholar 

  56. Oppo, G-L, Brambilla, M., and Lugiato, L.A. (1994) Phys. Rev. A49, 2028.

    ADS  Google Scholar 

  57. Oppo, G-L, Scroggie, A.J. and Firth, W.J. (2001) Phys. Rev. E, inpress.

    Google Scholar 

  58. Gomila, D., and Colet, P. (2001) Nonlinear Guided Waves and Their Applications OSA Technical Digest (Optical Society of America, Washington DC) 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Firth, W.J. (2001). Theory of Cavity Solitons. In: Boardman, A.D., Sukhorukov, A.P. (eds) Soliton-driven Photonics. NATO Science Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0682-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0682-8_49

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7131-1

  • Online ISBN: 978-94-010-0682-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics