Advertisement

Quadratic Solitons: Theory

  • Anatoly P. Sukhorukov
Part of the NATO Science Series book series (NAII, volume 31)

Abstract

In the present paper the fundamental theory of parametric solitons, trapping and interacting in bulk media, cavities and gratings with quadratic nonlinearity are considered. We discuss the mechanism of parametric self-action due to which quadratic solitons are formed. Nonlinear dispersion of both plane waves and solitons is investigated. Change of quadratic soliton properties in the process of narrowing of its width is traced with the help of numerical and analytical solutions of Maxwell equations. The criteria of soliton stability and nature of modulation instability are analyzed. The dynamics of soliton trapping is demonstrated. Advantages and disadvantages of effective particle model of quadratic solitons are presented. The main features of soliton generation in resonators are discussed as well.

Keywords

Optical Parametric Oscillator Phase Mismatch Quadratic Nonlinearity Nonlinear Dispersion Spatial Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karamzin, Ju. N. and Sukhorukov, A.P. (1974) Nonlinear interaction of diffracted light beams in a medium with quadratic nonlinearity: mutual focusing of beams and limitation on the efficiency of optical frequency converters, JETP Lett. 20, 339–342; (1976) Mutual focusing of high-power light beams in media with quadratic nonlinearity, Sov. Phys. JETP 41, 414-420.ADSGoogle Scholar
  2. 2.
    Karamzin, Ju.N., Sukhorukov, A.P., and Filipchuk, T.S. (1978) On a new class of coupled solitons in a dispersive medium with quadratic nonlinearity, Moscow Univ. Phys. Bull. 33(3), 73–79.Google Scholar
  3. 3.
    Torruellas, W.E., Wang, Z., Hagan, D.J., Van Stryland, E.W., Stegeman, G.I., Tomer, L., and Menyuk, C.R. (1995) Observation of two-dimensional solitary waves in a quadratic medium, Phys. Rev. Lett. 74, 5036–5039.ADSCrossRefGoogle Scholar
  4. 4.
    Schiek, R., Baek, Y. and Stegeman, G.I. (1996) One-dimensional spatial solitons due to cascaded second-order nonlinearities in planar waveguides, Phys. Rev. E 53, 1138–1144.ADSCrossRefGoogle Scholar
  5. 5.
    Advanced Photonics with Second-order Nonlinear Processes, Ed. by A. D. Boardman, L. Pavlov, and S. Tanev (Kluwer, Dordrecht, 1998.Google Scholar
  6. 6.
    Kanashov, A.A. and Rubenchik, A.M. (1981) On diffraction and dispersion effects on three wave interaction Physica 4D, 123–134.ADSGoogle Scholar
  7. 7.
    Hayata, K. and Koshiba, M. (1993) Multidimensional solitons in quadratic nonlinear media, Phys Rev. Lett. 71, 3275–3278; (1994), 72, 178 (E).ADSCrossRefGoogle Scholar
  8. 8.
    Werner, Y.J. and Drummond, P.D. (1993) Simulton solitons for the parametric amplifier, J. Opt. Soc. Am. B 10, 2390–2393.ADSCrossRefGoogle Scholar
  9. 9.
    Kalocsai, A.G. and Haus, J.W. (1994) Nonlinear Schrödinger equation for optical media with quadratic nonlinearity, Phys Rev. A 49, 574–585.ADSCrossRefGoogle Scholar
  10. 10.
    Sukhorukov, A.P. (1988) Nonlinear Wave Interactions in Optics and Radiophysics, Nauka Publishers, Moscow (in Russian)Google Scholar
  11. 11.
    Werner, Y.J. and Drummond, P.D. (1994) Strongly coupled nonlinear parametric solitary waves, Opt. Comm. 19, 613–615.Google Scholar
  12. 12.
    Buryak, A.V. and Kivshar, Yu. S. (1994) Spatial optical solitons governed by quadratic nonlinearity, Opt. Lett. 19, 1612–1614; Alexander V. Buryak, Yuri S. Kivshar (1995) Spatial optical solitons governed by quadratic nonlinearity: erratum, Opt. Lett. 20, 1080 (E); Buryak, A.V. and Kivshar, Yu.S (1995) Solitons Due to 2nd Harmonic Generation, Phys. Rev. A 197, 407-412.ADSCrossRefGoogle Scholar
  13. 13.
    Tomer, L. (1995) Stationary solitary waves with 2nd-order nonlinearities, Opt. Comm. 114, 136–140.ADSCrossRefGoogle Scholar
  14. 14.
    Tomer, L., Menyuk, C.R., and Stegeman, G.I (1995) Bright solitons with second-order nonlinearities, J. Opt. Soc. Am. B 12, 889–897. Torner L., Menyuk C.R. and Stegeman G.I. (1994) Excitation of solitons with cascaded sigma(2) nonlinearities Opt. Lett. 19, 1615-1617.ADSCrossRefGoogle Scholar
  15. 15.
    Ostrovskii, L.A. (1967) Self-action of light in crystals, JETP Lett. 5, 272–275.ADSGoogle Scholar
  16. 16.
    De Salvo, R., Hagan, D.J., Shiek-Bahae, M., Stegeman, G.I., and Vanherzeale, H. (1992) Self-focusing and self-defocusing by cascaded second-order effects in KTP, Opt. Lett. 17, 28–30ADSCrossRefGoogle Scholar
  17. 17.
    Kobyakov, A. and Lederer, F. (1996) Cascading of quadratic nonlinearities: An analytical study, Phys. Rev. A 54, 3455–3471.ADSCrossRefGoogle Scholar
  18. 18.
    Boardman, A.D. and Xie K. (1997) Vector spatial solitons influenced by magneto-optic effects in cascadable nonlinear media, Phys Rev. E 55, 1–11.CrossRefGoogle Scholar
  19. 19.
    Stegeman, G.I., Hagan, D.J., and Toraer, L. χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons (1996}) J. Opt. and Quantum Electron. 28, 1691.CrossRefGoogle Scholar
  20. 20.
    Sukhorukov, A.A. (2000) Approximate solutions and scalling transformations for quadratic solitons, Phys Rev. E 61, 4530–4531.ADSCrossRefGoogle Scholar
  21. 21.
    Steblina, V.V., Kivshar, Y.S., Lisak, M., and Malomed, B.A. (1995) Self-guided beams in a diffractive χ(2) medium: variational approach, Opt. Comm. 118, 345–352.ADSCrossRefGoogle Scholar
  22. 22.
    Lu, X. and Sukhorukov, A.P. (1996) Three-dimensional spatial solitons in a quadratically nonlinear medium, Bull. RAS, phys. 60(12), 64–69.Google Scholar
  23. 23.
    Agranovich, V.M., Darmanyan, S.A., Kamchatov, A.M., Leskova, T.A., and Boardman, A.D. (1997) Variational approach to solitons in systems with cascaded χ(2) nonlinearity, Phys. Rev. E 55 (in press).Google Scholar
  24. 24.
    Pelinovsky, DE, Buryak, A.V., and Kivshar, Y.S. (1995) Instability of solitons governed by quadratic nonlinearities, Phys. Rev. Lett. RS 5, 591–595.MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Kivshar, Y.S., and Pelinovsky, D.E. (2000) Self-focusing and transverse instabilities of solitary waves, Phys Rep 331, 118–195.MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Granot, E., Sternklar, S., Isbi, Y. et al. (1997) Subwavelength spatial solitons, Opt. Lett. 22, 1290–1292; (2000) On the existence of subwavelength spatial solitons, Opt. Commun. 178, 431-435.ADSCrossRefGoogle Scholar
  27. 27.
    Semenov, V.E., Rozanov, N.N., and Vysotina, N.V. (1999) Ultranarrow beams of electromagnetic radiation in media with a Kerr nonlinearity, J. Exp. Theor. Phys. 89, 243–248.ADSCrossRefGoogle Scholar
  28. 28.
    Boardman, A.D., Marinov, K.D., and. Pushkarov, I. et al. (2000). Influence of nonlinearly induced diffraction on spatial solitary waves, Opt. Quantum Electron. 32, 49–62.CrossRefGoogle Scholar
  29. 29.
    Boardman, A.D., Marinov, K.D., and Pushkarov, I. et al. (2000) Wave-beam coupling in quadratic nonlinear optical waveguides: Effects of nonlinearly induced diffraction, Phys. Rev. E 62, 2871–2877.ADSCrossRefGoogle Scholar
  30. 30.
    Pimenov, A.V., Sukhorukov, A.P. and Torner L., (2000) Ultranarrow optical beams in quadratically nonlinear media, JETP Letters, 72,10, 495–498ADSCrossRefGoogle Scholar
  31. 31.
    Segev, M. and Stegeman, G.I. (1998) Self-trapping of optical beams: Spatial solitons, Physics Today 51, 42–48.CrossRefGoogle Scholar
  32. 32.
    Lu, X., Sukhorukov, A.P. and Chuprakov D.A., (1998) Helical rotation of spatial solitons in a quadratic nonlinear medium, Bulletin of the Russian Academy of Sciences. Physics 62, 1864–1869.Google Scholar
  33. 33.
    Rosanov, N.N. (1997) Optical bistability and gisteresis in the distributed nonlinear systems. Moscow: Science. Google Scholar
  34. 34.
    Firth, W.J. and Scroggie, A.J. (1996) Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity, Phys. Rev. Lett. 76, 1623–1626.ADSCrossRefGoogle Scholar
  35. 35.
    Tissoni, G., Spinelli, L., Brambilla, M., Maggipinto, T., Perrini, I.M. and Lugiato, LA. (1999) Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities, J. Opt. Soc. Am. B. 16, 2083–2094.ADSCrossRefGoogle Scholar
  36. 36.
    Tissoni, G., Spinelli, L., Brambilla, M., Maggipinto, T., Perrini, I.M. and Lugiato, L.A. (1999) Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical properties and control, J. Opt. Soc. Am. B. 16, 2095–2105.ADSCrossRefGoogle Scholar
  37. 37.
    Michaelis, D., Peschel, U. and Lederer, F. (1997) Multistable localized structures and superlattices in semiconductor optical resonators, Phys. Rev. A 56, 3366–3369.ADSCrossRefGoogle Scholar
  38. 38.
    Boyce, J. and Chiano, R.Y. (1999) Transverse oscillation arising from spatial soliton formation in nonlinear optical cavities, Phys. Rev. A 59, 3953–3958.ADSCrossRefGoogle Scholar
  39. 39.
    Oppo, Gian-Luca, Brambilla, M. and Lugiato, L.A. (1994) Formation and evolution of roll patterns in optical parametric oscillators, Phys. Rev. A 49, 2028–2032.ADSCrossRefGoogle Scholar
  40. 40.
    Skryabin, D.V. and Firth, W.J. (1999) Interaction of cavity solitons in degenerate optical parametric oscillators, Opt. Lett 24, 1056–1058.ADSCrossRefGoogle Scholar
  41. 41.
    Skryabin, D.V. (1999) Instabilities of cavity solitons in optical parametric oscillators, Phys. Rev. E 60, 3505–3511.ADSCrossRefGoogle Scholar
  42. 42.
    Rosanov, N.N. (1997) Optical bistability and gisteresis in the distributed nonlinear systems. Moscow: Science.Google Scholar
  43. 43.
    Firth, W.J. and Scroggie, A.J. (1996) Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity, Phys. Rev. Lett. 76, 1623–1626.ADSCrossRefGoogle Scholar
  44. 44.
    Tissoni, G., Spinelli, L., Brambilla, M., Maggipinto, T., Perrini, I.M. and Lugiato, L.A. (1999) Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities, J. Opt. Soc. Am. B. 16, 2083–2094.ADSCrossRefGoogle Scholar
  45. 45.
    Tissoni, G., Spinelli, L., Brambilla, M., Maggipinto, T., Perrini, I.M. and Lugiato, L.A. (1999) Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical properties and control, J. Opt. Soc. Am.B. 16, 2095–2105.ADSCrossRefGoogle Scholar
  46. 46.
    Broderick, N.G.R., de Sterke, C.M., Eggleton, C.M. (1995). Soliton solutions in Rowland ghost gaps, Phys. Rev.E 52, 5788–5791.ADSCrossRefGoogle Scholar
  47. 47.
    Aceves, A.B. and Wabnitz, S. (1989) Self-induced transparency solitons in nonlinear refractive periodic media, Phys. Lett. A. 41, 37–42ADSCrossRefGoogle Scholar
  48. 48.
    Conti, C., De Rossi, A. Trillo S. et. al. (1998) Existence, bistability, and instability of Kerr-like parametric gap solitons in quadratic media, Opt. Lett. 23, 1265ADSCrossRefGoogle Scholar
  49. 49.
    Polyakov, S. V. and Sukhorukov, A. P. (1998) Excitation and properties of bicolored gap solitons // Izv. RAN (Bull. RAS, phys.) 62, 2327–2337Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Anatoly P. Sukhorukov
    • 1
  1. 1.Nonlinear Waves Laboratory Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations