Skip to main content

Effects of Nonlinearly Induced Inhomogeneity on Solitary Wave Formation

  • Chapter
Soliton-driven Photonics

Part of the book series: NATO Science Series ((NAII,volume 31))

  • 366 Accesses

Abstract

The chapter presents a new scalar model of optical beam propagation in nonlinear media, as it is developed in [14]. The model addresses narrow beams and stresses on nonlinearly induced diffraction, an effect of medium inhomogeneity introduced by the spatial variation of the nonlinear polarization. Strarting from the vector nonparaxial model of beam propagation in nonlinear media, it is shown that not the vectorial nature of the carrier wave field, but a scalar effect which comes out from the (div/E)-term in the wave equation and has the meaning of nonlinear diffraction, controls predominating over the nonparaxiality, the balance between diffraction and nonlinearity in the formation of the spatial solitons. The conclusion is based on analytical and numerical solutiuons of the nonlinear equations for the beam envelopes and on analysis of the wave power conservation laws derived. Both third (Kerr-type)- and second- order nonlinearities are treated as well as both planar waveguides and bulk media are covered. Single beam propagation and beam interaction and coupling are described. New solitary-wave solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boardman, A.D., Marinov, K., Pushkarov, D.I. and Shivarova, A. (2000) Influence of nonlinearly induced diffraction on spatial solitary waves, Opt. Quant. Electr. 32, 49–62.

    Article  Google Scholar 

  2. Marinov, K, Pushkarov, D.I. and Shivarova, A. (2000) Beam propagation in Kerr-type nonlinear waveguides, PhysicaScripta T84, 197–199.

    ADS  Google Scholar 

  3. Boardman, A.D., Marinov, K., Pushkarov, D.I. and Shivarova, A. (2000) Wave-beam coupling in quadratic nonlinear optical waveguides: Effects of nonlinearly induced diffraction, Phys. Rev. E 62, 2871–2877.

    Article  ADS  Google Scholar 

  4. Malomed, B.A., Marinov, K, Pushkarov, D.I. and Shivarova, A. (2000) Stability of narrow beams in bulk Kerrtype nonlinear media, Phys. Rev. A, submitted.

    Google Scholar 

  5. Shen, Y.R. (1975) Self-focusing: Experimental, Prog. Quant. Electr. 291, 1–34.

    Article  ADS  Google Scholar 

  6. Marburger, J.H. (1975) Self-focusing: Theory, Prog. Quant. Electr. 4, 35–110.

    Article  ADS  Google Scholar 

  7. De la Fuente, R., Varela, O. and Michinel, H. (2000) Fourier analysis of non-paraxial self-focusing, Opt. Commun. 173, 403–411.

    Article  ADS  Google Scholar 

  8. Granot, E., Sternklar, Sh., Isbi, Yu., Malomed, B. and Lewis, A. (2000) On the existence of subwavelength spatial solitons, Opt. Commun. 178, 431435.

    Article  Google Scholar 

  9. Ciattoni, A, Di Porto, P., Crosignani, B. and Yariv, A (2000) Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation, J. Opt. Soc. Am. B 17, 809–819.

    Article  ADS  Google Scholar 

  10. Blair, S. (2000) Nonparaxial one-dimensional spatial solitons, Chaos 10, 570–583.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Askar’yan, G. A, (1962) Effect of the gradient of a strong electromagnetic ray on electrons and atoms, ZhETF 42, 1567–1570.

    Google Scholar 

  12. Chiao, R.Y., Garmire, E. and Townes, C.H. (1964) Self-trapping of optical beams, Phys. Rev. Lett. 13, 479–482.

    Article  ADS  Google Scholar 

  13. Talanov, V.I. (1964) On the self-focusing of electromagnetic waves in nonlinear media, Izv. VUZ-Radiofizika 7, 564–565.

    MATH  Google Scholar 

  14. Kelley, P.L. (1965) Self-focusing of optical beams, Phys. Rev. Lett. 15, 1005–1008.

    Article  ADS  Google Scholar 

  15. Abakarov, D.I., Akopyan, A A and Pekar, S.I. (1967) To the theory of self-focusing in nonlinearly polarizing media, ZhETF 52, 463–466.

    Google Scholar 

  16. Vlasov, S.N., Petrishtev, V.A and Talanov, V.I. (1971) Averaged description of wave beams in linear and nonlinear media (momentum theory), Izv. VUZ-Radiofizika 14, 1353–1363.

    Google Scholar 

  17. Karlsson, M. (1992) Optical beams in saturable self-focusing media, Phys. Rev. A 46, 2726–2734.

    Article  ADS  Google Scholar 

  18. Manassah, J. and Gross, B. (1992) Comparison of the paraxial-ray approximation and the variational method solutions to the numerical results for a beam propagation in a self-docusing Kerr medium, Opt. Lett. 17, 976–978.

    Article  ADS  Google Scholar 

  19. Fibich, G.(1996) Adiabatic law for self-focusing of optical beams, Opt. Lett. 21, 1735–1737.

    Google Scholar 

  20. Lallemand, P. and Bloembergen, N. (1965) Self-focusing of laser beams and stimulated Raman gain in liquids, Phys. Rev. Lett. 15, 1010–1012.

    Article  ADS  Google Scholar 

  21. Dawes, E.L. and Marburger, J.H. (1969) Computer studies in self-focusing, Phys. Rev. 179, 862–868.

    Article  ADS  Google Scholar 

  22. Yablonovich, E. and Bloembergen, N. (1972) Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media, Phys. Rev. Lett. 29, 907–910.

    Article  ADS  Google Scholar 

  23. Suter, D. and Blasberg, T. (1993) Stabilization of transverse solitary waves by a nonlocal response of the medium, Phys. Rev. A 48, 4583–4587.

    Article  ADS  Google Scholar 

  24. La Fontaine, B., Vidal, F., Jiang, Z., Chien, C.Y., Comtois, D., Desparois, A, Johnston, T.W., Kieffer, J.-C. and Pepin, H. (1999) Filamentation of ultrashort pulse laser beams resulting from their propagation over long distance in air, Phys. Plasmas 6, 1615–1621.

    Google Scholar 

  25. Mlejnek, M., Wright E.M. and Moloney, J.V. (1999) Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air, Opt. Express 4, 223–228.

    Article  ADS  Google Scholar 

  26. Pohl, D. (1970) Vectorial theory of self-trapped light beams, Opt. Commun. 2, 305–308.

    Article  ADS  Google Scholar 

  27. Feit, M.D. and Fleck, J.A., Jr. (1988) Beam nonparaxiality, filament formation and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am. B 5 633–640.

    Article  ADS  Google Scholar 

  28. Akhmediev, N., Ankiewicz, A and Soto-Crespo, J.M. (1993) Does the nonlinear Schrödinger equation correctly describe beam propagation?, Opt. Lett. 18, 411–413.

    Article  ADS  Google Scholar 

  29. Soto-Crespo, J.M. and Akhmediev, N. (1993) Description of the self-focusing and collapse effects by a modified nonlinear Schrödinger equation, Opt. Commun. 101, 223–230.

    Article  ADS  Google Scholar 

  30. Chi, S. and Guo, Qi. (1995) Vector theory of self-focusing of an optical beam in Kerr-media, Opt. Lett. 20, 1598–1600.

    Article  ADS  Google Scholar 

  31. Fibich, G. (1996) Small beam nonparaxiality arests self-focusing of optical beams, Phys. Rev. Lett 76, 4356–4359.

    Article  ADS  Google Scholar 

  32. Crosignani, B., Di Porto, P. and Yariv, A(1997) Nonparaxial equation for linear and nonlinear optical propagation, Opt. Lett. 22, 778–780.

    Article  ADS  Google Scholar 

  33. Granot, E., Sternklar, Sh., Isbi, Yu., Malomed, B. and Lewis, A(1997) Subwavelength spatial solitons, Opt. Lett. 22, 1290–1292.

    Article  ADS  Google Scholar 

  34. Sheppard, AP. and Haelterman, M. (1998) Nonparaxiality stabilizes three-dimensional soliton beams in Kerr-media, Opt. Lett. 23, 1820–1822.

    Article  ADS  Google Scholar 

  35. Blair, S. and Wagner, K. (1998) (2+1)-D propagatioan of spatio-temporal solitary waves including higher-order corrections, Opt. Quant. Electr, 30, 697–737.

    Article  Google Scholar 

  36. Granot, E., Sternklar, Sh., Isbi, Yu., Malomed, B. and Lewis, A (1999) Subwavelength non-local spatial solitons, Opt. Commun. 166, 121–126.

    Article  ADS  Google Scholar 

  37. Eisenberg, H.S. and Silberberg, Y. (1999) Phase defects in self-focusing of ultrashort pulses, Phys. Rev. Lett. 83, 540–543.

    Article  ADS  Google Scholar 

  38. Pushkarov, Kh. I., Pushkarov, D.I. and Tomov, I.V. (1979) Self-action of light beams in nonlinear media: soliton solutions, Opt. Quant. Electr. 11, 471–478.

    Article  ADS  Google Scholar 

  39. Marinov, K, Pushkarov, D.I. and Shivarova, A (2001) Bright solitary-wave beams in bulk Kerr-type nonlinear media, in: AD. Boardman (ed.) Soliton Driven Photonics, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marinov, K., Pushkarov, D.I., Shivarova, A. (2001). Effects of Nonlinearly Induced Inhomogeneity on Solitary Wave Formation. In: Boardman, A.D., Sukhorukov, A.P. (eds) Soliton-driven Photonics. NATO Science Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0682-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0682-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7131-1

  • Online ISBN: 978-94-010-0682-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics