Skip to main content

Neural Prediction in Industry: Increasing Reliability through Use of Confidence Measures and Model Combination

  • Chapter
Practical Applications of Computational Intelligence Techniques

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 16))

  • 163 Accesses

Abstract

This chapter describes the application of neural networks to the prediction of “paper curl”, an important quality metric in the papermaking industry. In particular we address the issue of reliability in neural network training and prediction. Model combination is used to compensate for the limitations of non-linear optimization algorithms used for neural network training. In addition, confidence measures are used to characterize prediction uncertainty. Reliability enhancement though model combination enables training to be automated. The provision of a confidence measure along with the prediction facilitates the user in knowing whether to trust the prediction or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M. (1994), “Novelty detection and neural network validation,”IEE Proceedings in Vision Image and Signal Processingvol. 141, pp. 217–222.

    Article  Google Scholar 

  2. Bishop, C.M. (1995)Neural Networks for Pattern RecognitionOxford University Press.

    Google Scholar 

  3. Breiman, L. (1996), “Bagging predictors,”Machine Learningvol. 26, no. 2, pp. 123–140.

    Google Scholar 

  4. Breiman, L. (1999), “Using adaptive bagging to debias regressions,” Technical Report 547, University of California at Berkeley.Available (www.stat.berkeley.edu/pub/users/breiman)

    Google Scholar 

  5. Donaldson, J.R. and Schnabel, R.B. (1987), “Computational experience with confidence regions and confidence intervals for nonlinear least squares,”Technometricsvol. 29, no. 1, pp. 67–82.

    Article  MathSciNet  MATH  Google Scholar 

  6. Edwards, P.J. and Murray, A.F. (1998), “Toward optimally distributed computation,”Neural Computationvol. 10, pp. 997–1015.

    Article  Google Scholar 

  7. Edwards, P.J. and Murray, A.F. (2000), “Committee formation for reliable and accurate neural prediction in industry,”Proceedings of the European Symposium on Artificial Neural Networkspp. 141–146, Bruges, Belgium.

    Google Scholar 

  8. Edwards, P.J. and Murray, A.F. (2000), “A study of early stopping and model selection applied to the papermaking industry,”International Journal of Neural Systems.To appear.

    Google Scholar 

  9. Edwards, P.J., Murray, A.F., and Papadopoulos, G. (1999), “Cranking: neural network committee formation in the context of high predictive loss,”IEEE Transactions on Pattern Analysis and Machine Intelligence.Submitted.

    Google Scholar 

  10. Edwards, P.J., Murray, A.F., Papadopoulos, G., Wallace, A.R., Barnard, J., and Smith, G. (1999), “The application of neural networks to the papermaking industry,”IEEE Transactions on neural networksvol. 10, no. 6, pp. 1456–1464.

    Article  Google Scholar 

  11. Efron, B. and Tibshirani, R.J. (1993)An introduction to the bootstrapChapman & Hall, New York.

    MATH  Google Scholar 

  12. Eriksson, L-E., Cavlin, S., Fellers, C., and L.Carlsson (1987), “Curl and twist of paperboard — theory and measurement,”Nordic Pulp and Paper Research Journalvol. 2, no. 2, pp. 66–70.

    Article  Google Scholar 

  13. Freund, Y. (1995), “Boosting a weak learning algorithm by majority,”Inform. and Comput.vol. 21, pp. 256–285.

    Article  MathSciNet  Google Scholar 

  14. Goldner, P. (), “Drying systems for curl control,”TAPPI Journalvol. 47, no. 7, pp. 168A–170A.

    Google Scholar 

  15. Hashem, S. (1994)Optimal Linear Combinations of neural networksPh.D. thesis, Purdue University.

    Google Scholar 

  16. Heskes, T. (1997), “Balancing between bumping and bagging,”Proc. Neural Information Processing Systems (NIPS) Conferencepp. 466–472, Cambridge, Massachusetts. MIT Press.

    Google Scholar 

  17. Heskes, T. (1997), “Practical confidence and prediction intervals,”Proc. Neural Information Processing Systems (NIPS) Conferencepp. 176–182, Cambridge, Massachusetts. MIT Press.

    Google Scholar 

  18. Ho, T.K., Hull, J.J., and S.N.Srihari (1992), “A computational model for recognition of multifont words images,”Machine vision and applicationsvol. 5, pp. 157–168.

    Article  Google Scholar 

  19. Huang, Y.S. and Suen, C.Y. (1995), “A method of combining multiple experts for the recognition of unconstrained handwritten numerals,”IEEE Trans. Pattern Analysis and Machine Intelligencevol. 17, no. 1, pp. 90–94.

    Article  Google Scholar 

  20. Hwang, J.T.G. and Ding, A.A. (1995), “Prediction intervals for artificial neural networks,”Journal of the American Statistical Associationvol. 92, no. 438, pp. 748–757.

    Article  MathSciNet  Google Scholar 

  21. Kittler, J., Hatef, M., Duin, R.P.W., and Matas, J. (1998), “On combining classifiers,”IEEE Trans. Pattern Analysis and Machine Intelligencevol. 20, no. 3, pp. 226–239.

    Article  Google Scholar 

  22. Kittler, J., Matas, J., Jonsson, K., and Sánchez, M.U. Ramos (1997), “Combining evidence in personal identity verification systems,”Pattern Recognition Lettersvol. 18, no. 9, pp. 845–852.

    Article  Google Scholar 

  23. Kleinberg, E.M. (1996), “An overtraining-resistant stochastic modelling method for pattern recognition,”The Annals of Statisticsvol. 24, no. 6, pp. 2319–2349.

    Article  MathSciNet  MATH  Google Scholar 

  24. Krogh, A. and Vedelsby, J. (1995), “Neural network ensembles, cross validation and active learning,” in Tesauro, G., Touretzky, D.S., and Leen, T.K. (Eds.)Proc. Neural Information Processing Systems (NIPS) Conferencepp. 231–238. MIT Press.

    Google Scholar 

  25. Langevin, E.T. and Giguere, W. (1994), “Online curl measurement and control,”TAPPI Journalvol. 77, no. 8, pp. 105–110.

    Google Scholar 

  26. Lebel, R. and Stadal, M. (1982), “Control of fine paper curl in papermaking,”Pulp and Paper-Canadavol. 83, no. 6, pp. 112–117.

    Google Scholar 

  27. Lyne, M.B. (1988), “Paper requirements for non-impact,”International Printing and Graphic Arts Conference Proceedingspp. 8997. TAPPI Press.

    Google Scholar 

  28. MacKay, D.J.C. (1992), “Bayesian framework for backpropagation networks,”Neural Computationvol. 4, no. 3, pp. 448–472.

    Article  Google Scholar 

  29. MacKay, D.J.C. (1992), “Evidence framework applied to classification networks,”Neural Computationvol. 4, no. 5, pp. 720–736.

    Article  Google Scholar 

  30. Mann, K.C. and Huff, L.A. (1992), “Curl control with a Coanda actuator system,”TAPPI Journalvol. 75, no. 5, pp. 133–137.

    Google Scholar 

  31. Meir, R. (1995), “Bias, variance and the combination of estimators,” in Tesauro, G., Tourestzky, D., and Leen, T. (Eds.)Proc. Neural Information Processing Systems (NIPS) Conference7, pp. 295–302. MIT Press.

    Google Scholar 

  32. Merz, C.J. (1998), “Combining classifiers using correspondence analysis,” in Jordan, M., Kearns, M.J., and Solla, S.A. (Eds.)Proc. Neural Information Processing Systems (NIPS) Conference 10pp. 591–597. MIT.

    Google Scholar 

  33. Munro, P.W. and Parmanto, B. (1997), “Competition among networks improves committee performance,”Proc. Neural Information Processing Systems (NIPS) Conference 9pp. 592–598, Cambridge, Massachusetts. MIT Press.

    Google Scholar 

  34. Neal, R.M. (1996)Bayesian learning for neural networksSpringer—Verlag, New York.

    Book  MATH  Google Scholar 

  35. Nix, D.A. and Weigend, A.S. (1995), “Learning local error bars for nonlinear regression,” in Tesauro, G., Tourestzky, D., and Leen, T. (Eds.)Proc. Neural Information Processing Systems (NIPS) Conferencepp. 489–496. MIT Press.

    Google Scholar 

  36. Nordstrom, A., Carlsson, L.A., and Hagglund, J.E. (1997), “Measuring curl of thin papers,”TAPPI Journalvol. 80, no. 1, pp. 238–244.

    Google Scholar 

  37. Papadopoulos, G., Edwards, P.J., and Murray, A.F. (2000), “Confidence estimation methods for neural networks: a practical comparison,”Proceedings of the European Symposium on Artificial Neural Networkspp. 75–80, Bruges, Belgium.

    Google Scholar 

  38. Parmanto, B., Munro, P.W., and Doyle, H.R. (1996), “Improving committee diagnosis with resampling techniques,” in Tourestzky, D.S., Mozer, M.C., and Hasselmo, M.E. (Eds.)Proc. Neural Information Processing Systems (NIPS) Conference 8pp. 882–888. MIT Press.

    Google Scholar 

  39. Perrone, M.P. and Cooper, L.N. (1993)When networks disagree: ensemble methods for hybrid neural networkspp. 126–142. Chapman & Hall, London, UK.

    Google Scholar 

  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P (1992)Numerical Recipes in CCambridge University Press.

    Google Scholar 

  41. Qazaz, C. (1996)Bayesian Error Bars for RegressionPhD thesis, Aston University.

    Google Scholar 

  42. Rosen, B.E. (1996), “Ensemble learning using decorrelated neural networks,”Connection Sciencevol. 8, no. 3, pp. 373–383.

    Article  Google Scholar 

  43. Schapire, R.E. (1990), “The strength of weak learnability,” Machinelearningvol. 5, pp. 197–227.

    Google Scholar 

  44. Sharkey, A.J.C. (1996), “On combining artificial neural nets,”Connection Sciencevol. 8, no. 3, pp. 299–313.

    Article  Google Scholar 

  45. Silverman, B.W. (1986)Density Estimation for Statistics and Data AnalysisChapman & Hall, London.

    MATH  Google Scholar 

  46. Thodberg, H.H. (1996), “A review of Bayesian neural networks with an application to near infrared spectroscopy,”IEEE Trans. Neural Networksvol. 7, no. 1, pp. 56–72.

    Article  Google Scholar 

  47. Tibshirani, R.J. (1996), “A comparison of some error estimates for neural network models,”Neural Computationvol. 8, no. 1, pp. 152–163.

    Article  Google Scholar 

  48. Tresp, V., Ahmad, S., and Neuneier, R. (1994), “Training neural networks with deficient data,”Proc. Neural Information Processing Systems (NIPS) Conference 6pp. 128–135. Morgan Kaufmann.

    Google Scholar 

  49. Tresp, V. and Taniguchi, M. (1995), “Combining estimators using non-constant weighting functions,”Proc. Neural Information Processing Systems (NIPS) Conference 7pp. 419–426, Cambridge, Massachusetts. MIT Press.

    Google Scholar 

  50. Ueda, N. and Nakano, R. (), “Generalisation error of ensemble estimators,”Proc. International Conference on Neural Networksvol. 1, pp. 90–95, Washington D.C.

    Google Scholar 

  51. Viitaharju, P., Kajanto, I., and Niskanen, K. (1997), “Heavy papers and curl measurement,”Paper and Timbervol. 79, no. 2, pp. 115–120.

    Google Scholar 

  52. Wolpert, D. and Macready, W. (1996), “Combining stacking with bagging to improve a learning algorithm,” Technical Report SF 1TR-96–03-123, Santa Fe Institute.

    Google Scholar 

  53. Wolpert, D.H. (1992), “Stacked generalisation,”Neural Networksvol. 5, no. 2, pp. 241–259.

    Article  MathSciNet  Google Scholar 

  54. Zhang, J. (1999), “Inferential estimation of polymer quality using bootstrap aggregated networks,” NeuralNetworksvol. 12, pp. 927–938.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edwards, P.J., Papadopoulos, G., Murray, A.F. (2001). Neural Prediction in Industry: Increasing Reliability through Use of Confidence Measures and Model Combination. In: Jain, L., De Wilde, P. (eds) Practical Applications of Computational Intelligence Techniques. International Series in Intelligent Technologies, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0678-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0678-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3868-3

  • Online ISBN: 978-94-010-0678-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics