Skip to main content

Cortical Maps as Topology-Representing Neural Networks Applied to Motor Control:

Articulatory speech synthesis

  • Chapter
Plausible Neural Networks for Biological Modelling

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 13))

  • 381 Accesses

Abstract

Substantial advances have been achieved, since the pioneering work in the 50’s and 60’s by Mountcastle, Hubel, Wiesel and Evarts, amongst others, in understanding the cortex as a continuously adapting system, shaped by competitive and co—operative interactions. However, the greatest part of the effort has been devoted to the investigation of the receptive—field properties of cortical maps, whereas relatively little attention has been devoted to the role of lateral connections and the cortical dynamic processes that are determined by the patterns of recurrent excitation (Amari 1977, Kohonen 1982, Grajski and Merzenich 1990, Reggia et al. 1992, Martinetz and Schulten 1994, Sirosh and Miikkulainen 1997, Sanguineti et al. 1997a, Levitan and Reggia 1999, 2000). In this chapter we explore the hypothesis that lateral connections may actually be used to build topological internal representations and propose that the latter are particularly well suited for the processing of high—dimensional ‘spatial’ variables and for solving complex problems of motor control that involve sensorimotor information. In particular, we apply the methods to the case of speech motor control in which acoustic and articulatory variables are typically high-dimensional, and describe an approach to articulatory speech synthesis that is based on the dynamic interaction of two computational maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amari S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern., 27, 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Badin P., Gabioud B., Beautemps D., Lallouache T., Bailly G., Maeda S., Zerling JP., Brock G. Cineradiography of VCV sequences: articulatory-acoustic data for a speech production model. In International Conference on Acoustics, pp. 349–352, Trondheim, Norway (1995)

    Google Scholar 

  • Benaim M. On functional approximation with normalized GaussianUnits. Neural Comput., 6, 319–333 (1994)

    Article  Google Scholar 

  • Benaim M., Tomasini L. Competitive and self-organizing algorithms based on the minimization of an information criterion. In Artificial Neural Networks (T. Kohonen, K. Makisara, O. Simula, and J. Kangas, editors), pp. 391–396, North-Holland, Amsterdam (1991)

    Google Scholar 

  • Braitenberg V. Vehicles — Experiments in Synthetic Psychology. MIT Press, Cambridge, Mass. (1984).

    Google Scholar 

  • Bullock D., Grossberg S. VITE and FLETE: Neural modules for trajectory formation and postural control. In Volitional Action (W.A. Hershberger, editor), pp. 253–297, North-Holland, Amsterdam (1989)

    Chapter  Google Scholar 

  • Calvin WH. Cortical columns, modules, and Hebbian cell assembles. In The handbook of brain theory and neural networks (M. A. Arbib, editor), pp.269–272. MIT Press, Cambridge, Mass (1995)

    Google Scholar 

  • Conway JH, Sloane NJA. Sphere packings, lattices and groups. Springer Verlag, New York, NY (1993).

    MATH  Google Scholar 

  • Droulez J., Berthoz A. A neural model of sensoritopic maps with predictive short-term memory properties. Proceedings of the National Academy of Sciences, 88, 9653–9657, (1991)

    Article  Google Scholar 

  • Durbin R., G.Mitchison G. A dimension reduction framework for understanding cortical maps. Nature, 343, 644–647 (1990)

    Article  Google Scholar 

  • Das A, Gilbert CD. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399, 655–661 (1999)

    Article  Google Scholar 

  • Flash T., N.Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci., 7, 1688–1703 (1985)

    Google Scholar 

  • Frisone F., Morasso P., Perico L. Self-organization in cortical maps & EM learning. J. Advanced Computat. Intel., 2, 178–184 (1998a)

    Google Scholar 

  • Frisone F., Vitali P., Morasso P. Cortical activity pattern in complex tasks. In Computational Neuroscience: Trends in Research (J.M. Bower, editor), Plenum Press, pp. 13–18 (1998b)

    Google Scholar 

  • Frisone F, Vitali P, Iannò G, Marongiu M, Morasso P, Pilot A, Rodriguez G, Rosa M, Sardanelli F. Can the synchronization of cortical areas be evidenced by fMRI? J. Neurocomp., 26-27, 1019–1024. (1999)

    Article  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT. Mental rotation of the neuronal population vector. Science, 243, 234–236 (1989)

    Article  Google Scholar 

  • Gilbert CD, Wiesel TN. Morphology and intracortical projections of functionally identified neurons in cat visual cortex. Nature, 280, 120–125 (1979)

    Article  Google Scholar 

  • Grajski KA, Merzenich MM. Hebb-type dynamics is sufficient to account for the inverse magnification rule in cortical somatotopy. Neural Comput., 2, 71–84 (1990)

    Article  Google Scholar 

  • Grossberg S. Contour enhancement, short term memory, and constancies in reverberating neural networks. Studies in Appl. Math., 52, 213–257 (1973)

    MathSciNet  MATH  Google Scholar 

  • Jordan MI, Rumelhart DE. Forward models: Supervised learning with a distal teacher. Cognitive Sci., 16, 307–354 (1992)

    Article  Google Scholar 

  • Katz LC, Callaway EM. Development of local circuits in mammalian visual cortex. Ann. Rev. Neurosci., 15, 31–56 (1992)

    Article  Google Scholar 

  • Knudsen EI, duLac S, Esterly SD. Computational maps in the brain. Ann. Rev. Neurosci., 10, 41–65 (1987)

    Article  Google Scholar 

  • Kohonen T. Self organizing formation of topologically correct feature maps. Biol. Cybern., 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Levitan S, Reggia JA. Interhemispheric effects on map organization following simulated cortical lesions. Artif. Intell. Med., 17, 59–85 (1999)

    Article  Google Scholar 

  • Levitan S, Reggia JA. A computational model of lateralization and asymmetries in cortical maps. Neural Comput., 12, 2037–2062 (2000)

    Article  Google Scholar 

  • Laboissiere R. Préliminaires pour une Robotique de la Communication Parlée: Inversion et Controle d’un Modèle Articulatoire du Conduit Vocal. PhD Thesis, Institut National Polytechnique de Grenoble, (1992)

    Google Scholar 

  • Lindblom B, Lubker J, Gay T. Formant frequencies of some fixed-mandible vowels and a model of speech motor programming by predictive simulation. J. Phonetics, 7, 147–161 (1979)

    Google Scholar 

  • Lukashin AV, Georgopoulos AP. A neural network for coding trajectories by time series of neuronal population vectors. Neural Comput., 6, 19–28 (1994)

    Article  Google Scholar 

  • Maeda S. Improved articulatory model. J. Acoust. Soc. America, 81(S1), S146 (1988)

    Article  Google Scholar 

  • Martinetz T, Schulten K. Topology representing networks. Neural Networks, 7, 507–522 (1994)

    Article  Google Scholar 

  • Morasso P., Sanguined V. Self-organizing body-schema for motor planning. J. Motor Behav., 26, 131–148 (1995)

    Google Scholar 

  • Morasso P, Sanguined V. How the brain can discover the existence of external egocentric space. Neurocomput., 12, 289–310 (1996)

    Article  MATH  Google Scholar 

  • Morasso P, Sanguineti V, Frisone F, Perico L. Coordinate-free sensorimotor processing: computing with population codes. Neural Networks, 11, 1417–1428 (1998)

    Article  Google Scholar 

  • Morasso P, Sanguineti V, Frisone F. Computational implications of modeling grasping as a form of (multiple-parallel) reaching. Motor Control, 3, 276–279 (1999)

    Google Scholar 

  • Morasso P. (2000) Is schema theory an appropriate framework for modeling the organization of the brain? Behav. Brain Sci., 23 (2000)

    Google Scholar 

  • Munoz DP, Pelisson D, Guitton D. Movement of neural activity on the superior colliculus motor map during gaze shifts. Science, 251, 358–360 (1991)

    Article  Google Scholar 

  • Nicoll A, Blakemore C. Patterns of local connectivity in the neocortex. Neural Comput., 5, 665–680 (1993)

    Article  Google Scholar 

  • Ohman A. Numerical model of coarticulation. J. Acoust. Soc. America, 41, 310–320 (1967)

    Article  Google Scholar 

  • Reggia JA, D’Autrechy CL, Sutton GG III, Weinrich M. A competitive distribution theory of neocortical dynamics. Neural Comput., 4, 287–317 (1992)

    Article  Google Scholar 

  • Salinas E, Abbott LF. Transfer of coded information from sensory to motor networks. J. Neurosci., 15, 6461–6474 (1995)

    Google Scholar 

  • Sanger TD. Theoretical considerations for the analysis of population coding in motor cortex. Neural Comput., 6, 29–37 (1994)

    Article  Google Scholar 

  • Sanger TD, Merzenich MM. Computational model of the role of sensory disorganization in focal task-specific dystonia. J. Neurophysiol., 84, 2458–2464 (2000)

    Google Scholar 

  • Sanguined V, Morasso P, Frisone F. Cortical maps of sensorimotor spaces. In Self-organization, Computational Maps, and Motor Control (P. Morasso and V. Sanguineti, editors), pp 1–36. North Holland, Amsterdam (1997a)

    Chapter  Google Scholar 

  • Sanguineti V, Laboissière R, Payan Y. A control model of human tongue movements in speech. Biol. Cybern., 77, 11–22 (1997b)

    Article  MATH  Google Scholar 

  • Sanguineti V, Laboissière R, Ostry DJ. A Dynamic Biomechanical Model for Neural Control of Speech Production. J. Acoust. Soc. America, 103, 1615–1627 (1998)

    Article  Google Scholar 

  • Schwark HD, Jones EG. The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex. Exper. Brain Res., 78, 501–513 (1989)

    Google Scholar 

  • Singer W. Synchronization of neural responses as a putative binding mechanism. In The handbook of brain theory and neural networks (M.A. Arbib, editor), pp 960–964. MIT Press, Cambridge, Mass (1995)

    Google Scholar 

  • Sirosh J, Miikkulainen R. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural. Comput., 9, 577–594 (1997)

    Article  Google Scholar 

  • Zipser D, Andersen RA. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679–684 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morasso, P., Sanguineti, V., Frisone, F. (2001). Cortical Maps as Topology-Representing Neural Networks Applied to Motor Control:. In: Mastebroek, H.A.K., Vos, J.E. (eds) Plausible Neural Networks for Biological Modelling. Mathematical Modelling: Theory and Applications, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0674-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0674-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3864-5

  • Online ISBN: 978-94-010-0674-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics