Skip to main content

Simulation of the Human Oculomotor Integrator Using a Dynamic Recurrent Neural Network

  • Chapter
Plausible Neural Networks for Biological Modelling

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 13))

  • 380 Accesses

Abstract

In this chapter we introduce a biologically plausible model of the neural integrator model based on recurrent neural networks. Its original features are: fixed sign synaptic weights for all the network connections; and artificial transmission delays between the units. These improvements lead to the emergence of clusters in the weight structure of the lateral inhibitory connection layer. We will demonstrate that these clusters are not an artifact of computation.

We will see that this spontaneous emergence of clusters in artificial neural networks, performing a well defined physico—mathematical task (a temporal integration) is owed to computational constraints, with a restricted space of solutions. Thus information processing constraints could be a plausible factor inducing the emergence of iterated patterns in biological neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, F.: Integrating with action potential. Neuron, 26:3–4 (2000).

    Article  Google Scholar 

  • Anastasio, T.: Neural network models of velocity storage in the horizontal vestibulo-ocular reflex. Biol Cybern, 64:187–196 (1991).

    Article  Google Scholar 

  • Arnold, D. B. and Robinson, D. A.: A learning model of the neural integrator of the oculomotor system. Biol Cybern, 64:447–454 (1991).

    Article  Google Scholar 

  • Baker, R. and Berthoz, A.: Is the prepositus hypoglossi nucleus the source of another vestibular ocular pathway ? Brain Res, 86:366–371 (1975).

    Article  Google Scholar 

  • Becker, W. and Klein, H.: Accuracy of saccadic eye movements and maintenance of eccentric eye position in the dark. Vision Res, 13:1021–1034 (1973).

    Article  Google Scholar 

  • Bliss, T. V. P. and Lomo, T.: Long-lasting potentiation of synaptic transmission in the dendate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol, 232:331–356 (1973).

    Google Scholar 

  • Cannon, S. C. and Robinson, D. A.: A proposed neural network for the integrator of the oculomotor system. Biol Cybern, 49:127–136 (1983).

    Article  Google Scholar 

  • Cannon, S. C. and Robinson, D. A.: An improved neural-network model for the neural integrator of the oculomotor system: more realistic neuron behavior. Biol Cybern, 53:93–108 (1985).

    Article  Google Scholar 

  • Cannon, S. and Robinson, D. A.: Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol, 53:93–108 (1987).

    Google Scholar 

  • Cheron, G. and Godaux, E.: Self-terminated fast movement of the forearm in man: amplitude dependence of the triple burst pattern. Journal of Biophysics and Biomechanics, 10(3): 109–117 (1986).

    Google Scholar 

  • Cheron, G. and Godaux, E.: Disabling of the oculomotor integrator by kainic acid injections in the prepositus-vestibular complex of the cat. J Physiol (London), 394:267–290 (1987).

    Google Scholar 

  • Cheron, G., Mettens, R and Godaux, E.: Gaze holding defect induced by injections of ketamine in the cat brainstem. NeuroReport, 3:97–100 (1992).

    Article  Google Scholar 

  • Crawford, J., Cadera, W. and Vilis, T.: Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science, 252:1551–1553 (1991).

    Article  Google Scholar 

  • Delgado-Garcia, J., Vidal, J., Gomez, C. and Berthoz, A.: A neurophysiological study of the prepositus hypoglossi neurons projecting to oculomotor and preoculomotor nuclei in the alert cat. Neuroscience, 29:291–307 (1989).

    Article  Google Scholar 

  • Draye, J., Cheron, G., Libert, G. and Godaux, E.: Supervised neural network simulation of the integrator of the oculomotor system. Journal of Biomechanics, 27(6):775 (1994).

    Google Scholar 

  • Eccles, J. C.: Chemical transmission and Dale’s principle. In Neuropeptides in central nervous system. Hokfelt T., Fuxe K. and Bjorklund A., eds (1986).

    Google Scholar 

  • Escudero, M., de la Cruz, R. and Delgado-Garcia, J.: A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. J Physiol, 458:539–560 (1992).

    Google Scholar 

  • Fukushima, K.: The interstitial nucleus of Cajal and its role in control of movements of head and eyes. Prog Neurobiol, 29:107–192 (1987).

    Article  Google Scholar 

  • Fuster, J.: Memory in the cerebral cortex. Cambridge, MA:MIT Press (1995).

    Google Scholar 

  • Gill, R E., Murray, W. and Wright, M. H.: Practical Optimization. Academic Press (1981).

    Google Scholar 

  • Godaux, E. and Cheron, G.: The hypothesis of the uniqueness of the oculomotor integrator: direct experimental evidence in the cat. Journal of Physiology, 492(2):517–527 (1996).

    Google Scholar 

  • Hale, J.: Ordinary Differential Equations. Krieger, New York (1980).

    MATH  Google Scholar 

  • Hoyle, F.: On the fragmentation of gas clouds into galaxies and stars. Astrophysical J, 118:513–528 (1953).

    Article  Google Scholar 

  • Ikeda, N.: Distributed and cerebellar projections of cholinergic and cortiotropin-releasing factor-containing neurons in the caudal vestibular nuclear complex and adjacent brainstem. Neuroscience, 49(3):635–651 (1992).

    Article  Google Scholar 

  • Illing, S.: Association of efferent neurons to the compartmental architecture of the superior colliculus. Proc Natl Acad Sci USA, 89:10900–10904 (1992).

    Article  Google Scholar 

  • Ito, M.: Long-term depression. Ann Rev Neurosci, 12:85–102 (1989).

    Article  Google Scholar 

  • Kamath, B. and Keller, E.: A neurological integrator for the oculomotor system. Math Biosci, 30:341–352 (1976).

    Article  MATH  Google Scholar 

  • Kaneko, C.: Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. i. saccades and fixation. J Neurophysiol, 78:1753–1768 (1997).

    Google Scholar 

  • Kaneko, C.: Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. ii. pursuit, vestibular. J Neurophysiol, 81:668–681 (1999).

    Google Scholar 

  • King, W. and Leigh, R.: Physiology of vertical gaze. In Lennerstrand, G., Zee, D.S. and Keller, E., editors, Physiology of vertical gaze in functional basis of ocular motility disorders, pages 267–272. Pergamon Press, Oxford (1982).

    Google Scholar 

  • LaSalle, J.: The stability of dynamical systems. In SIAM Regional Conferences Series in Applied Mathematics, volume 25. SIAM (1976).

    Google Scholar 

  • Mandelbrot, B.: Les objets fractals: Survol du langage fractal. Flammarion (1989).

    Google Scholar 

  • McFarland, J. and Fuchs, A.: Discharge patterns in nucleus prepositus hypoglossi and adjacent medial nucleus during horizontal eye movements in behaving macaques. J Neurophysiol, 68:319–332 (1992).

    Google Scholar 

  • Mettens, P., Godaux, E., Cheron, G. and Galiana, H.: Effect of muscimol microinjections into the prepositus hypoglossi and the medial vestibular nuclei on cat eye movements. J Neurophysiol, 72:785–802 (1994).

    Google Scholar 

  • Pastor, A., De La Cruz, R. and Baker, R.: Eye position and eye velocity integrators reside in separate brainstem nuclei. Proceedings of the National Academy of Science USA, 91:807–811 (1994).

    Article  Google Scholar 

  • Pearlmutter, B.: Learning state space trajectories in recurrent neural networks. Neural Computation, 1:263–269 (1989).

    Article  Google Scholar 

  • Purves, D., Riddle, D. R. and LaMantia, A.-S.: Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends in Neurosciences, 15:362–368 (1992).

    Article  Google Scholar 

  • Quinn, K. J., Schmajuk, N., Jain, A., Baker, J. F. and Peterson, B. W.: Vestibu-loocular reflex arc analysis using an experimentally constrained neural network. Biol Cybern, 67:113–122 (1992).

    Article  Google Scholar 

  • Robinson, D. A.: Eye movement control in primates. Science, 161:1219–1224 (1968).

    Article  Google Scholar 

  • Robinson, D. A.: Implications of neural networks for how we think about brain function. Behavioral and Brain Sciences, 15:644–655 (1992).

    Google Scholar 

  • Robinson, D. A.: Integrating with neurons. Ann Rev Neurosci, 12:33–45 (1989).

    Article  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. and Williams, R. J.: Learning internal representations by error propagation. In Parallel Distributed Processing: Ex-plorations of the Micro structure of Cognition, volume I. Cambridge MA, Bradford Books (1986).

    Google Scholar 

  • Schroeder, M.: Fractals, Chaos, Power Laws. W. H. Freeman and Company (1991).

    Google Scholar 

  • Seung, H.: How the brain keeps the eyes still. Proceedings of the National Academy of Science USA, 93:13339–13344 (1996).

    Article  Google Scholar 

  • Seung, H., Lee, D., Reis, B. and Tank, D.: Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron, 26:259–271 (2000).

    Article  Google Scholar 

  • Wang, X. and Blum, E. K.: Discrete-time versus continuous-time models of neural networks. Journal of Computer and System Sciences, 45:1–19 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  • Weissman, B., DiScenna, A. and Leigh, R.: Maturation of the vestibulo-ocular reflex in normal infants during the first two monts of life. Neurology, 39:534–538 (1989).

    Article  Google Scholar 

  • Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1:270–280 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Draye, JP., Cheron, G. (2001). Simulation of the Human Oculomotor Integrator Using a Dynamic Recurrent Neural Network. In: Mastebroek, H.A.K., Vos, J.E. (eds) Plausible Neural Networks for Biological Modelling. Mathematical Modelling: Theory and Applications, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0674-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0674-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3864-5

  • Online ISBN: 978-94-010-0674-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics