Skip to main content

Part of the book series: Mathematical Modelling: Theory and Applications ((MMTA,volume 13))

Abstract

In standard neural network models neurons are described in terms of mean firing rates, viz., an analog signal. Most real neurons, however, communicate by pulses, called action potentials, or simply ‘spikes’. In this chapter the main differences between spike coding and rate coding are described. The ‘integrate and fire’ model is studied as a simple model of a spiking neuron. Fast transients, synchrony, and coincidence detection are discussed as examples where spike coding is relevant. A description by spikes rather than rates has implications for learning rules. We show the relation of a spike time dependent learning rule to standard Hebbian learning. Finally, learning rule and temporal coding are illustrated using the example of a coincidence detecting neuron in the barn owl auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L. F. and Blum, K. I. (1996). Functional significance of long-term potentiation for sequence learning and prediction. Cerebral Cortex, 6:406–416.

    Article  Google Scholar 

  • Abbott, L. F. and van Vreeswijk, C. (1993). Asynchronous states in a network of pulse-coupled oscillators. Phys. Rev. E, 48:1483–1490.

    Article  Google Scholar 

  • Abeles, M. (1991). Corticonics. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Abeles, M. (1994). Firing rates and well-timed events. In Domany, E., Schulten, K. and van Hemmen, J. L., editors, Models of Neural Networks 2, chapter 3, pages 121–140. Springer, New York.

    Chapter  Google Scholar 

  • Bi, G. Q. and Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18:10464–10472.

    Google Scholar 

  • Bugmann, G., Christodoulou, C. and Taylor, J. G. (1997). Role of temporal integration and fluctuation detection in the highly irregular firing of leaky integrator neuron model with partial reset. Neural Comput., 9:985–1000.

    Article  Google Scholar 

  • Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci., 10:3227–3246.

    Google Scholar 

  • Debanne, D., Gähwiler, B. and Thompson, S. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol., 507:237–247.

    Article  Google Scholar 

  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cybern., 60:121–130.

    Article  Google Scholar 

  • Engel, A. K., König, P. and Singer, W. (1991). Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl Acad. Sci. USA, 88:9136–9140.

    Article  Google Scholar 

  • Gerstner, W. (1991). Associative memory in a network of ‘biological’ neurons. In Lippmann, R. P., Moody, J. E. and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 3, pages 84–90, San Mateo CA. Morgan Kaufmann Publishers.

    Google Scholar 

  • Gerstner, W., Ritz, R. and van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern., 69:503–515.

    MATH  Google Scholar 

  • Gerstner, W. and van Hemmen, J. L. (1993). Coherence and incoherence in a globally coupled ensemble of pulse emitting units. Phys. Rev. Lett., 71(3):312–315.

    Article  Google Scholar 

  • Gerstner, W. and van Hemmen, J. L. (1994). Coding and information processing in neural networks. In Domany, E., van Hemmen, J. L., and Schulten, K., editors, Models of neural networks II, pages 1–93, New York. Springer-Verlag.

    Chapter  Google Scholar 

  • Gerstner, W. (1995). Time structure of the activity in neural network models. Phys. Rev. E, 51(1):738–758.

    Article  MathSciNet  Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J. L. and Wagner, H. (1996a). A neuronal learning rule for sub-millisecond temporal coding. Nature, 386:76–78.

    Article  Google Scholar 

  • Gerstner, W., van Hemmen, J. L. and Cowan, J. D. (1996b). What matters in neuronal locking. Neural Comput., 8:1653–1676.

    Article  Google Scholar 

  • Gerstner, W. and Abbott, L. F. (1997). Learning navigational maps through potentiation and modulation of hippocampal place cells. Journal of Comput. Neurosci., 4:79–94.

    Article  Google Scholar 

  • Gerstner, W. (1998a). Populations of spiking neurons. In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 10, pages 261–295. MIT-Press.

    Google Scholar 

  • Gerstner, W. (1998b). Spiking neurons. In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 1, pages 3–53. MIT-Press.

    Google Scholar 

  • Gerstner, W., Kempter, R. and van Hemmen, J. L. (1998). Hebbian learning of pulse timing in the barn owl auditory system. In Maass, W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 14, pages 353–377. MIT-Press.

    Google Scholar 

  • Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Comput., 12(1):43–89.

    Article  Google Scholar 

  • Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 86:1698–1702.

    Article  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. Wiley, New York.

    Google Scholar 

  • Herz, A. V. M., Sulzer, B., Kühn, R. and van Hemmen, J. L. (1988). The Hebb rule: Representation of static and dynamic objects in neural nets. Europhys. Lett., 7:663–669.

    Article  Google Scholar 

  • Herz, A. V. M., Sulzer, B., Kühn, R. and van Hemmen, J. L. (1989). Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biol Cybern., 60:457–467.

    Article  MATH  Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localisation. J. Comp. Physiol. Psychol., 41:35–39.

    Article  Google Scholar 

  • Kempter, R., Gerstner, W., van Hemmen, J. L. and Wagner, H. (1998). Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Comput., 10:1987–2017.

    Article  Google Scholar 

  • Kempter, R., Gerstner, W. and van Hemmen, J. L. (1999). Hebbian learning and spiking neurons. Phys. Rev. E, 59:4498–4514.

    Article  MathSciNet  Google Scholar 

  • Kempter, R., Gerstner, W. and van Hemmen, J. L. (2000). Intrinsic stabilization of output rates by spike-based hebbian learning. Neural Comput., submitted.

    Google Scholar 

  • Kistler, W. M. and van Hemmen, J. L. (2000). Modeling synaptic plasticity in conjunction with the timing of pre-and postsynaptic potentials. Neural Comput., 12:385–405.

    Article  Google Scholar 

  • Knight, B. W. (1972a). Dynamics of encoding in a population of neurons. J. Gen. Physiology, 59:734–766.

    Article  Google Scholar 

  • Knight, B. W. (1972b). The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. J. Gen. Physiology, 59:767–778.

    Article  Google Scholar 

  • Konishi, M. (1986). Centrally synthesized maps of sensory space. Trends in Neurosciences, 9(4): 163–168.

    Article  MathSciNet  Google Scholar 

  • Konishi, M. (1993). Listening with two ears. Scientific American, 268 (‘April’) pages 34–41.

    Article  Google Scholar 

  • König, P., Engel, A. K. and Singer, W. (1996). Integrator or coincidence detector? The role of the cortical neuron revisited. TINS, 19(4): 130–137.

    Google Scholar 

  • Levy, W. B. and Stewart, D. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in hippocampus. Neurosci., 8:791–797.

    Article  Google Scholar 

  • Markram, H. and Tsodyks, M. (1997). The information content of action potential trains: a synaptic basis. In Gerstner, W., Germond, A., Hasler, M., Nicoud, J., editors, Artificial Neural Networks — ICANN’97, Lecture Notes in Computer Science, 1327. Springer.

    Google Scholar 

  • Minai, A. and Levy, W. B. (1993). Sequence learning in a single trial. In INNS World Congress on Neural Networks II, pages 505–508. Intern. Neural Network Soc.

    Google Scholar 

  • O’Keefe, J. and Recce, M. (1993). Phase relationship between hippocampal place units and the hippocampal theta rhythm. Hippocampus, 3:317–330.

    Article  Google Scholar 

  • Plesser, H. (1999). Aspects of Signal Processing in Noisy Neurons. PhD thesis, Georg-August-Universität, Göttingen.

    Google Scholar 

  • Shadlen, M. N. and Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opininon in Neurobiology, 4:569–579.

    Article  Google Scholar 

  • Song, S., Miller, K. and Abbott, L. (2000). Competitive hebbian learning through spike-time-dependent synaptic plasticity. Nature Neuroscience, 3:919–926.

    Article  Google Scholar 

  • Sullivan, W. E. and Konishi, M. (1986). Neural map of interaural phase difference in the owl’s brainstem. Proc. Natl. Acad. Sci USA, 83:8400–8404.

    Article  Google Scholar 

  • Thorpe, S., Fize, D. and Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381:520–522.

    Article  Google Scholar 

  • Treves, A. (1992). Local neocortical processing: a time for recognition. Int. J. of Neural Systems, 3 (Supp): 115–119.

    Article  Google Scholar 

  • Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4:259–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Troyer, T. W. and Miller, K. (1997). Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput., 9:971–983.

    Article  Google Scholar 

  • Tsodyks, M. V. and Sejnowski, T. (1995). Rapid state switching in balanced cortical networks. Network, 6:111–124.

    Article  MATH  Google Scholar 

  • Zhang, L., Tao, H., Holt, C, Harris, W. A. and Poo, M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395:37–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gerstner, W. (2001). What is Different with Spiking Neurons?. In: Mastebroek, H.A.K., Vos, J.E. (eds) Plausible Neural Networks for Biological Modelling. Mathematical Modelling: Theory and Applications, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0674-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0674-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3864-5

  • Online ISBN: 978-94-010-0674-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics