Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 35))

Abstract

We review the deformed instanton equations making connection with Hilbert schemes and integrable systems. A single U(1) instanton is shown to be anti-self-dual with respect to the Burns metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berest, Yu. and Wilson, G. Automorphisms and Ideals of the Weyl Algebra.

    Google Scholar 

  2. Braden, H.W. (in press) Rigidity, Functional Equations and the Calogero-Moser Model, J. Phys. A., preprint nlin.SI/0005046.

    Google Scholar 

  3. Braden, H.W. and Byatt-Smith, J.G.B. (1999) On a Functional Differential Equation of Determinantal Type, Bull. Loud. Math. Soc. 31, 463–470.

    Article  MathSciNet  MATH  Google Scholar 

  4. Braden, H.W. and Buchstaber, V.M. (1997) Integrable Systems with Pairwise Interactions and Functional Equations, Reviews in Mathematics and Mathematical Physics 10, 121–166.

    MATH  Google Scholar 

  5. Braden, H.W. and Buchstaber, V.M. (1997) The General Analytic Solution of a Functional Equation of Addition Type, SIAM J. Math. Anal. 28, 903–923.

    Article  MathSciNet  MATH  Google Scholar 

  6. Braden, H.W. and Hone, A.N.W. (1996) Affine Toda Solitons and Systems of Calogero-Moser Type, Phys. Lett. B380, 296–302, hep-th/9603178.

    MathSciNet  ADS  Google Scholar 

  7. See for example contributions in H.W. Braden and I.M. Krichever (eds.), Integrability: the Seiberg-Witten and Whitham equations, Gordon and Breach Science Publishers, Amsterdam, (2000).

    MATH  Google Scholar 

  8. Braden, H.W., Marshakov, A., Mironov, A. and Morozov, A. (1999) Seiberg-Witten theory for a non-trivial compactification from five to four dimensions, Physics Letters B448, 195–202.

    MathSciNet  ADS  Google Scholar 

  9. Braden, H.W. Marshakov, A., Mironov, A. and Morozov, A. (1999) The Ruijsenaars-Schneider Model in the Context of Seiberg-Witten Theory, Nucl. Phys. B558, 371–390, hep-th/9902205.

    Article  ADS  Google Scholar 

  10. Braden, H.W., Marshakov, A., Mironov, A. and Morozov, A. (2000) On Double-Elliptic Integrable Systems. 1. A Duality Argument for the case of SU(2), Nucl. Phys. B573, 553–572, hep-th/9906240.

    Article  MathSciNet  ADS  Google Scholar 

  11. Braden, H.W. and Marshakov, A. (in press) Singular Phases of Seiberg-Witten Integrable Systems: Weak and Strong Coupling, Nucl. Phys. B, preprint hep-th/0009060.

    Google Scholar 

  12. Braden, H.W. and Nekrasov, N.A. (1999) Space-time Foam from Noncommutative Instantons, preprint hep-th/9912019.

    Google Scholar 

  13. Braden, H.W. and Sasaki, R. (1997) The Ruijsenaars-Schneider Model, Prog. Theor. Phys. 97, 1003–1018, hep-th/9702182.

    Article  MathSciNet  ADS  Google Scholar 

  14. Bruschi, M. and Calogero, F. (1987) The Lax Representation for an Integrable Class Of Relativistic Dynamical Systems, Commun. Math. Phys. 109, 481–492.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bruschi, B. and Calogero, F. (1990) General Analytic Solution of Certain Functional Equations of Addition Type, SIAM J. Math. Anal. 21, 1019–1030.

    Article  MathSciNet  MATH  Google Scholar 

  16. Buchstaber, V.M. and Perelomov, A.M. (1996) On the functional equation related to the quantum three-body problem, Contemporary mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 175, 15–34.

    MathSciNet  Google Scholar 

  17. Burns, D. (1986) Twistors and Harmonic Maps, Lecture. Amer. Math. Soc. Conference, Charlotte, NC.

    Google Scholar 

  18. Calogero, F. (1975) Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento (2) 13, 411–416.

    Article  MathSciNet  Google Scholar 

  19. Calogero, F. On a functional equation connected with integrable many-body problems, Lett. Nuovo Cimento 16, 77–80.

    Google Scholar 

  20. Calogero, F. (1975) One-dimensional many-body problems with pair interactions whose exact ground-state is of product type, Lett. Nuovo Cimento 13, 507–511.

    Article  Google Scholar 

  21. Corrigan, E. and Goddard, P. (1984) Construction of instanton and monopole solutions and reciprocity, Annals of Physics 154, 253.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. See the contributions of G. Wilson, I. Krichever, N. Nekrasov and H.W. Braden in Proceedings of the Workshop on Calogero-Moser-Sutherland models, CRM Series in Mathematical Physics, Springer-Verlag, (2000).

    Google Scholar 

  23. Donagi, R. and Witten, E. (1996) Supersymmetric Yang-Mills Systems And Integrable Systems, Nucl. Phys. B460 299–344.

    Article  MathSciNet  ADS  Google Scholar 

  24. Donaldson, S.K. (1984) Instantons and Geometric Invariant Theory, Commun. Math. Phys. 93, 453–460.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Gutkin, E. (1988) Integrable Many-Body Problems and Functional Equations, J. Math. Anal. Appl. 133, 122–134.

    Article  MathSciNet  MATH  Google Scholar 

  26. Felder, G. and Veselov, A.P. (1994) Shift operators for the quantum Calogero-Sutherland problems via Knizhnik-Zamolodchikov equation, Comm. Math. Phys. 160, 259–273.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Fock, V., Gorsky, A., Nekrasov, N. and Rubtsov, V. (1999) Duality in Integrable Systems and Gauge Theories, preprint hep-th/9906235.

    Google Scholar 

  28. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A. and Morozov, A. (1995) Integrability and Seiberg-Witten Exact Solution, Phys. Lett. B355, 466–474, hep-th/9505035.

    MathSciNet  ADS  Google Scholar 

  29. Gorsky, A. and Mironov, A. (2000) Integrable Many-Body Systems and Gauge Theories, preprint hep-th/0011197.

    Google Scholar 

  30. Gorsky, A., Nekrasov, N. and Rubtsov, V. Hilbert Schemes, Separated Variables, and D-branes, preprint hep-th/9901089.

    Google Scholar 

  31. Hirzebruch, F., Berger, Th. and Jung, R. (1992) Manifolds and Modular Forms, Vieweg, Wiesbaden.

    MATH  Google Scholar 

  32. Hitchin, N.J., Karlhede, A., Lindstrom, U. and Rocek, M. (1987) Comm. Math. Phys. 108, 535.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Inozemtsev, V.I. (1989) Lax Representation with Spectral Parameter on a Torus for Integrable Particle Systems, Lett. Math. Phys. 17, 11–17.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Inozemtsev, V.I. (1989) The finite Toda lattices, Commun. Math. Phys. 121, 629–638.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Kazhdan, D., Kostant, B. and Sternberg, S. (1978) Hamiltonian Group Actions and Dynamical Systems of Calogero Type, Commun. Pure and Appl. Math. 31, 481–507.

    Article  MathSciNet  MATH  Google Scholar 

  36. Lazaroiu, C. (1998) A noncommutative-geometric interpretation of the resolution of equivariant instanton moduli spaces, preprint hep-th/9805132.

    Google Scholar 

  37. Losev, A., Nekrasov, N. and Shatashvili, S. (in press) The Freckled Instantons, in M. Shifman (ed.) Y. Golfand Memorial Volume, World Scientific, Singapore, preprint hep-th/9908204.

    Google Scholar 

  38. Martinec, E. and Warner, N. (1996) Integrable systems and supersymmetric gauge theory, Nucl. Phys. 459, 97–112, hep-th/9509161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Nakajima, H. (1999) Lectures on Hilbert Schemes of Points on Surfaces, AMS University Lecture Series, ISBN 0-8218-1956-9.

    Google Scholar 

  40. Marshakov, A. (1999) Seiberg-Witten theory and integrable systems, Singapore, World Scientific.

    Book  MATH  Google Scholar 

  41. Matsuo, A. (1992) Integrable connections related to zonal spherical functions, Invent. Math. 110, 95–121.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Nekrasov, N. (1996) “Four dimensional holomorphic theories”, PhD. thesis, Princeton.

    Google Scholar 

  43. Nekrasov, N. (1997) On a duality in Calogero-Moser-Sutherland systems, preprint hep-th/ 9707111.

    Google Scholar 

  44. Nekrasov, N. and Schwarz, A.S. (1998) Commun. Math. Phys. 198, 689, hep-th/9802068.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Olshanetsky, M.A. and Perelomov, A.M. (1981) Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71, 313–400.

    Article  MathSciNet  ADS  Google Scholar 

  46. Olshanetsky, M.A. and Perelomov, A.M. (1983) Quantum integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 94, 313–404.

    Article  MathSciNet  ADS  Google Scholar 

  47. Ochiai, H., Oshima, T. and Sekiguchi, H. (1994) Hideko Commuting families of symmetric differential operators, Proc. Japan Acad. Ser. A Math. Sci. 70, 62–66.

    MathSciNet  MATH  Google Scholar 

  48. Oshima, T. and Sekiguchi, H. (1995) Commuting families of differential operators invariant under the action of a Weyl group, J. Math. Sci. Univ. Tokyo 2, 1–75.

    MathSciNet  MATH  Google Scholar 

  49. Ruijsenaars, S.N.M. and Schneider, H. (1986) A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170, 370–405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Sutherland, B. (1975) Exact ground-state wave function for a one-dimensional plasma, Phys. Rev. Lett. 34, 1083–1085.

    Article  ADS  Google Scholar 

  51. Sutherland, B. (1972) Exact results for a quantum many-body problem in one dimension, Phys. Rev. A4, 2019–2021; A5, 1372-1376.

    ADS  Google Scholar 

  52. Takasaki, K. (2000) Hyperelliptic Integrable Systems on K3 and Rational Surfaces, preprint math.AG/0007073.

    Google Scholar 

  53. Taniguchi, K. (1997) On uniqueness of commutative rings of Weyl group invariant differential operators, Publ. Res. Inst. Math. Sci. 33, 257–276.

    Article  MathSciNet  Google Scholar 

  54. Wilson, G. Collisions of Calogero-Moser particles and adelic Grassmannian, Invent. Math. 133, 1–41.

    Google Scholar 

  55. Witten, E. and Seiberg, N. (1999) JEEP 9909 032, hep-th/9908142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braden, H.W., Nekrasov, N.A. (2001). Instantons, Hilbert Schemes and Integrability. In: Pakuliak, S., von Gehlen, G. (eds) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. NATO Science Series, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0670-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0670-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7184-7

  • Online ISBN: 978-94-010-0670-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics