Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 35))

Abstract

By using the remarkable properties of the (non-compact) quantum dilogarithm it is shown that the Dehn twist operator in quantum Teichmüller theory has a complete continuous spectrum, the eigenvectors in certain basis being given as a ratio of two quantum dilogarithms. The completeness condition of the eigenvectors includes the integration measure which appeared in the representation theoretic approach to quantum Liouville theory by Ponsot and Teschner. The obtained spectrum is consistent with expected spectrum of conformal weights in continuous quantum Liouville theory at c > 1.

Supported in part by grants CRDF RM1-2244, INTAS 99-01705, and RFBR 99-01-00101

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chekhov, L. and Fock, V. (1999) Quantum Teichmüller space. Theor. Math. Phys. 120, 1245–1259, math.QA/9908165.

    Article  MATH  Google Scholar 

  2. Dubrovin, B.A., Fomenko, A.T. and Novikov, S.P. (1990) Modern GeometryMethods and Applications. Part III. Introduction to Homology Theory. Springer-Verlag.

    Google Scholar 

  3. Faddeev, L.D. (1995) Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254, hep-th/9504111.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Faddeev, L.D., Kashaev, R.M. and Volkov, A.Yu. (2000) Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality, preprint hep-th/0006156.

    Google Scholar 

  5. Fock, V. Dual Teichmüller spaces, preprint dg-ga/9702018.

    Google Scholar 

  6. Gasper, G. and Rahman, M. (1990) Basic hypergeometric series, Cambridge University Press.

    Google Scholar 

  7. Jimbo, M. and Miwa, T. (1996)Quantum KZ equation with q = 1 and correlation functions of the XXZ model in the gapless regime, J. Phys. A: Math. Gen. 29, 2923–2958.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Kashaev, R.M. (1998) Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43, 105–115, q-alg/9705021.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kashaev, R.M. (1999) Liouville central charge in quantum Teichmüller theory, Proc. of the Steklov Inst. of Math. 226, 63–71, hep-th/9811203.

    MathSciNet  Google Scholar 

  10. Kashaev, R.M. (2000) On the spectrum of Dehn twists in quantum Teichmüller theory, preprint HIP-2000-44/TH, math.QA/0008148.

    Google Scholar 

  11. Kurokawa, N. (1991) Multiple sine functions and Selberg zeta functions. Proc. Japan Acad. Ser. A Math. Sci. 67, 61–64.

    Article  MathSciNet  MATH  Google Scholar 

  12. Mosher, L. (1995) Mapping class groups are automatic. Annals of Math., Vol. 142, 303–384.

    Article  MathSciNet  MATH  Google Scholar 

  13. Penner, R.C. (1987) The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys. 113, 299–339.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ponsot, P. and Teschner, J. (1999) Liouville bootstrap via harmonic analysis on a noncompact quantum group. Preprints DIAS-STR-99-14, ESI-791, LPM-99/46, hep-th/9911110.

    Google Scholar 

  15. Ponsot, P. and Teschner, J. (2000) Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of U q(sl(2,IR)). Preprint DIAS-STP-00-15, LPM-00/21, tt math.QA/0007097.

    Google Scholar 

  16. Ruijsenaars, S.N.M. (1997) First order analytic difference equations and integrable systems. J. Math. Phys. 38, 1069–1146.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Woronowicz, S.L. (2000) Quantum exponential function. Rev. Math. Phys., 12, No. 6, 873–920.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kashaev, R. (2001). The Quantum Dilogarithm and Dehn Twists in Quantum TeichmÜller Theory. In: Pakuliak, S., von Gehlen, G. (eds) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. NATO Science Series, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0670-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0670-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7184-7

  • Online ISBN: 978-94-010-0670-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics