Advertisement

Integrable Evolutionary Equations Via Lie Algebras on Hyperelliptic Curves

  • P. Holod
  • T. Skrypnyk
Part of the NATO Science Series book series (NAII, volume 35)

Abstract

We construct a family of quasi-graded algebras on hyperelliptic curves that admit the Kost ant-Adler scheme. We use them to find new integrable nonlinear evolutionary equations which admit zero-curvature representations.

Keywords

Hamiltonian System Poisson Bracket Hamiltonian Equation Hyperelliptic Curve Coadjoint Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tahtadjan, L. and Faddejev, L. (1987) Hamiltonian approach in the theory of solitons. Springer, Berlin.Google Scholar
  2. 2.
    Reyman A.G. and Semenov Tian-Shansky M. A. (1979) Reductions of Hamiltonian systems, affine Lie algebras and Lax equations I, Invent. Math, 54, 81–100.MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Reyman A.G. and Semenov Tian-Shansky M. A. (1980) Current algebras and nonlinear equations in partial derivatives, Doklady of the Academy of sciences of USSR, 251, No 6, 1310–1324.Google Scholar
  4. 4.
    Sklyanin E.K. (1979) On complete integrability of the Landau-Lifschits equations, preprint LOMIE-3-79.Google Scholar
  5. 5.
    Holod P.I. (1984) Hamiltonian Systems connected with the anisotropic affine Lie algebras and higher Landau-Lifschits equations, Doklady of the Academy of sciences of Ukrainian SSR, 276, No 5., 5–8.Google Scholar
  6. 6.
    Holod P.I. (1984) Finite-gap extension of the hamiltonian equations for Kirchhoff’ s problem in Steklov’s integrable case, preprint ITF-84-87R.Google Scholar
  7. 7.
    Holod P.I. (1987) Two-dimensional generalization of the integrable equation of Steklov of the motion of the rigid body in the liquid, Doklady of the Academy of sciences of the USSR, 292, No 5, 1087–1091.Google Scholar
  8. 8.
    Sidorenko Yu. N. (1987) The elliptic bundle and generating operators, Zapiski Nauch. Sem. LOMI, 161. Google Scholar
  9. 9.
    Holod P.I. and Skrypnyk T.V. (2000) Anisotropic Quasigraduated Lie Algebras on Hyperelliptic Curves and Integrable Hammiltonian Systems, Naukovi Zapysky NaUKMA 8, (Phys-Math Science), 20–25.Google Scholar
  10. 10.
    Skrypnyk T.V. (2000) Lie algebras on hyperelliptic curves and finite-dimensional integrable systems, Proceedings of the XXIII International Colloquium on the group theoretical methods in Physics, Dubna, Russia, nlin.SI-0010005.Google Scholar
  11. 11.
    Krichever I.M. and Novikov S.P. (1987) Virassoro type algebras, Riemannian surface and soliton theiry structure, Func. Anal, and Appl, 21, (2), 46–64.MathSciNetGoogle Scholar
  12. 12.
    Oh, P. and Park, Q-H. (1996) More on generalized Heizenberg Ferromagnet Models, Phys. Lett. B383, 333–338.MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • P. Holod
    • 1
  • T. Skrypnyk
    • 1
  1. 1.Bogolyubov Institute for Theoretical PhysicsKiev-143Ukraine

Personalised recommendations