Skip to main content

β-D-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4)β-D-glucan synthase

  • Chapter
Plant Cell Walls

Abstract

Cellulose synthase genes (CesAs) encode a broad range of processive glycosy ltransferases that synthesize (1→4)β- D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four ‘U-motifs’ with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called ‘hypervariable region’ (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species, Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a ‘class-specific region’ (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (1→4)β-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (1→4)β-glycan synthases in plants. For example, the mixed-linkage (1→3)(1→4)β-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of other, 8-linked cross-linking glycans. In this respect, the enzymatic properties of the mixed-linkage, 8-glucan synthases not only provide special insight into the mechanisms of (1→4 )β-glycan synthesis but may also uncover the genes that encode the synthases themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CSR:

class-specific region

GAX:

glucuronoarabinoxylan

β-glucan:

mixed-linkage (1→3),(I→4)β-D-glucan

HGA:

homogalacturonan

HVR:

hypervariable region

P-CR:

plant-conserved region

(RT)-PCR:

(reverse transcriptase)-polymerase chain reaction

RG I:

rhamnogalacturonan I

SuSy:

sucrose synthase

References

  • Altschul, S.P., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357.

    Google Scholar 

  • Anderson, M.A. and Stone, B.A. 1975. A new substrate for investigating the specificity of β-glucan hydrolases. FEBS Lett. 52: 202–207.

    Google Scholar 

  • Arioll, T., Peng, L.C., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J. and Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Bacic, A. and Delmer, D.P. 1981. Stimulation of membrane-associated polysaccharide synthetases by a membrane potential in developing cotton fibers. Planta 152: 346–351.

    Google Scholar 

  • Becker, M., Vincent, C. and Reid, J.S.G. 1995. Biosynthesis of (1→3),(1→4)-β-glucan in barley (Hordeum vulgare L.). Planta 195: 331–338.

    Google Scholar 

  • Breton, C. and Imberty, A 1999. Structure/function studies of glycosyltransferases. Curro Opin. Struct. Biol. 9: 563–571.

    Google Scholar 

  • Brown, R.M. Jr. and Saxena, I.M. 2000. Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol. Biochem. 38: 57–67.

    Google Scholar 

  • Buckeridge, M.S., Vergara, C.E. and Carpita, N.C. 1999. The mechanism of synthesis of a cereal mixed-linkage (143),(144)-β-D-glucan: evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120: 1105–1116.

    Google Scholar 

  • Buckeridge, M.S., Vergara, C.E. and Carpita, N.C. 2001. Insight into multi-site mechanisms of glycosyl transfer in (144)β-D-glycan synthases provided by the cereal mixed-linkage (1→3),(1→4)β-D-glucan synthase. Phytochemistry, in press.

    Google Scholar 

  • Bulawa, C.E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W.L. Jr. and Robbins, P.W. 1986. The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46: 213–225.

    Google Scholar 

  • Burton, R.A, Gibeaut, D.M., Bacic, A., Findlay, K., Roberts, K., Hamilton, A., Baulcombe, D.C. and Fincher, G.B. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12: 691–705.

    Google Scholar 

  • Carpita, N.C. 1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 445–476.

    Google Scholar 

  • Carpita, N.C. and Delmer, D.P. 1980. Protection of cellulose synthesis in detached cotton fibers by polyethylene glycol. Plant Physiol 66: 911–916.

    Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of the primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Google Scholar 

  • Carpita, N.C. and Vergara, C.E. 1998. A recipe for cellulose. Science 279: 672–673.

    Google Scholar 

  • Carpita, N.C, McCarm, M. and Griffing, L.R. 1996. The plant extracellular matrix: news from the cell’s frontier. Plant Cell 8: 1451–1463.

    Google Scholar 

  • Charnock, S.J. and Davies, G.J. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38: 6380–6385.

    Google Scholar 

  • Cui, X., Shin, H., Song, C.C., Laosinchai, W., Amano, Y. and Brown, R.M. Jr. 2001. A putative plant homolog of the yeast β-1,3-glucan synthase subunit FKSI from cotton (Gossypium hirsutum L.) fibers. Planta, in press

    Google Scholar 

  • DeAngelis, P.L., Papaconstantinou, J. and Weigel, P.H. 1993. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from Group A Streptococcus pyogenes. J. Biol. Chem. 268: 19181–19184.

    Google Scholar 

  • Delgado, I.J., Wang, Z., deRocher, A., Keegstra, K. and Raihkel, N.V. 1998. Cloning and characterization of AtRGPI. A reversibly autoglycosylated Arabidopsis protein implicated in cell wall biosynthesis. Plant Physiol. 116: 1339–1349.

    Google Scholar 

  • Delmer, D.P. 1977. Biosynthesis of cellulose and other plant cell wall polysaccharides. Rev. Adv. Phytochem. 11: 105–153.

    Google Scholar 

  • Delmer, D.P. 1999. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245–276.

    Google Scholar 

  • Delmer, D.P., Benziman, M. and Padan, E. 1982. Requirement for a membrane potential for cellulose synthesis in intact cells of Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 79: 5282–5286.

    Google Scholar 

  • Devereaux, J., Haeberli, P. and Smithies, O.A. 1984. Comprehensive set of sequence analysis programs for the VAX. Nucl. Acids Res. 12: 387–395.

    Google Scholar 

  • Dhugga, K.S. and Ray, P.M. 1994. Purification of (1→3)-β-D-glucan synthase activity from pea tissue. Two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur. J. Biochem. 220: 943–953.

    Google Scholar 

  • Dhugga, K.S., Tiwari, S.C. and Ray, P.M. 1997. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proc. Natl. Acad. Sci. USA 94: 7679–7684.

    Google Scholar 

  • Doblin, M.S., De Melis, L., Newbigin, E., Bacic, A. and Read, S.M. 2001. Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol., in press.

    Google Scholar 

  • Douglas, C.M., Foor, E., Marrinan, J.A., Morin, N., Nielsen, J.B., Dahl, A.M. et al. 1994. The Saccharomyces cerevisiae FKS1 (ETG 1) gene encodes an integral membrane protein which is a subunit of (1→3)-β-D-glucan synthase. Proc. Natl. Acad. Sci. USA 91: 12907–12911.

    Google Scholar 

  • Doyle, J.J. and Gaut, B.S. 2000. Evolution of genes and taxa: a primer. Plant Mol. Biol. 42: 1–23.

    Google Scholar 

  • Fagard, M., Desnos, T., Desprez, T., Goubet, E, Refregier, G., Mouille, G. et al. 2000. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12: 2409–2423.

    Google Scholar 

  • Fersht, A. 1999. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman, New York.

    Google Scholar 

  • Gastinel, L.N., Cambillau, C. and Bourne, Y. 1999. Crystal structures of the bovine β-4-gaiactosyltransferase catalytic domain and its complex with uridine diphosphate galactose. EMBO J. 18: 3546–3557.

    Google Scholar 

  • Geremia, R.A., Mergaert, P., Geelen, D., Van Montagu, M. and Holsters, M. 1994. The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc. Natl. Acad. Sci. USA 91: 2669–2673.

    Google Scholar 

  • Gibeaut, D.M. 2000. Nucleotide sugars and glycsoyltransferases for synthesis of cell wall matrix polysaccharides. Plant Physiol. Biochem. 38: 69–80.

    Google Scholar 

  • Gibeaut, D.M. and Carpita, N.C. 1993. Synthesis of (1→3),(1→4)β-D-glucan in the Golgi apparatus of maize coleoptiles. Proc. Natl. Acad. Sci. USA 90: 3850–3854.

    Google Scholar 

  • Gibeaut, D.M. and Carpita, N.C. 1994a. Biosynthesis of plant cellwall polysaccharides. FASEB J. 8: 904–915.

    Google Scholar 

  • Gibeaut, D.M. and Carpita, N.C. 1994b. Improved recovery of (1→3),(1→4)β-D-glucan synthase activity from Golgi apparatus of Zea mays (L.) using differential centrifugation. Protoplasma 180: 92–97.

    Google Scholar 

  • Gordon, R. and Maclachlan, G. 1989. Incorporation of UDP[ 14C]glucose into xyloglucan by pea membranes. Plant Physiol. 91: 373–378.

    Google Scholar 

  • Haigler, C.H., Ivanova-Datcheva, M., Hogan, P.S., Salnikov, V.V., Hwang, S., Martin, L.K. and Delmer, D.P. 2001. Carbon partitioning to cellulose synthesis. Plant Mol. Biol., this issue.

    Google Scholar 

  • Henrissat, B., Coutinho, P.M. and Davies, G.I. 2001. A census of carbohydrate-active enzymes in the genome of Ambidopsis thaliana. Plant Mol. Biol., this issue.

    Google Scholar 

  • Henry, R.I. and Stone, B.A 1982. Factors influencing β-glucan synthesis by particulate enzymes from suspension-cultured Lolium multiflorum endosperm cells. Plant Physiol. 69: 632–636.

    Google Scholar 

  • Hirai, N., Sonobe, S. and Hayashi, T. 1998. In situ synthesis of β-glucan microfibrils on tobacco plasma membrane sheets. Proc. Natl. Acad. Sci. USA 95: 15102–15106.

    Google Scholar 

  • Hobbs, M.C., Delange, M.H.P., Baydoun, E.A-H. and Brett, C.T. 1991. Differential distribution of a glucuronoyltransferase, involved in glucuronoxylan synthesis, with the Golgi apparatus of pea (Pisum sativum var. Alaska). Biochem. J. 277: 653–658.

    Google Scholar 

  • Holland, N., Holland, D., Helentjaris, T., Dhugga, K., Xoconostle-Cazares, B. and Delmer, D.P. 2000. A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol. 123: 1313–1323.

    Google Scholar 

  • Hong, Z., Delauney, A.J. and Verma, D.P.S. 2001. A cell platespecific callose synthase and its interaction with phragmoplastin. Plant Cell, in press.

    Google Scholar 

  • Kawagoe, Y. and Delmer, D.P. 1997. Pathways and genes involved in cellulose biosynthesis. Genet. Eng. 19: 63–87.

    Google Scholar 

  • Kim, J.B., Olek, A.T. and Carpita, N.C. 2000. Cell wall and membrane-associate exo-β-D-glucanases from developing maize seedlings. Plant Physiol. 123: 471–485.

    Google Scholar 

  • Koyama, M., Helbert, W., Imai, T., Sugiyama, J. and Henrissat, B. 1997. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94: 9091–9095.

    Google Scholar 

  • Legault, D.I., Kelly, R.I., Natsuka, Y. and Lowe, J.B. 1995. Human α (1,3/1,4)-fucosyltransferases discriminate between different oligosaccharide acceptor substrates through a discrete peptide fragment. J. Biol. Chem. 270: 20987–20996.

    Google Scholar 

  • Lind, T., Lindahl, U. and Lidholt, K.J. 1993. Biosynthesis of heparin heparan sulfate. Identification of a 70 kDa protein catalyzing both the D-glucuronosyltransferase and the N-acetyl-Dglucosaminyltransferase reactions. J. Biol. Chem. 268: 20705–20708.

    Google Scholar 

  • Matthysse, A.G., White, S. and Lightfoot, R. 1995. Genes required for cellulose synthesis in Agrobacterium tumefasciens. J. Bact. 177: 1069–1075.

    Google Scholar 

  • McCann, M.C. and Roberts, K. 1991. Architecture of the primary cell wall. In: C.W. Lloyd (Ed.) The Cytoskeletal Basis of Plant Growth and Form, Academic Press, London, pp. 109–129.

    Google Scholar 

  • McDowell, J.M., Huang, S., McKinney, E.C., An, Y.Q. and Meagher, R.B. 1996. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142: 587–602.

    Google Scholar 

  • McLean, B.G., Huang, E.C., McKinney, E.C. and Meagher, R.B. 1990. Plants contain highly divergent actin isovariants. Cell Motil. 17: 276–290.

    Google Scholar 

  • Meinert, M.C. and Delmer, D.P. 1977. Changes in biochemical composition of cell wall of cotton fiber during development. Plant Physiol. 59: 1088–1097.

    Google Scholar 

  • Munoz, P., Norambuena, L. and Orellana, A. 1996. Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol. 112: 1585–1594.

    Google Scholar 

  • Nicol, F., His, I., Jauneau, A., Vemhettes, S., Canut, H. and Hofte, H. 1998. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17: 5563–5576.

    Google Scholar 

  • Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. and Stalker, D.M. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    Google Scholar 

  • Perrin, R., Wilkerson, C. and Keegstra, K. 2001. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol. Biol., this issue.

    Google Scholar 

  • Piro, G., Dalessandro, G. and Northcote, D.H. 1993. Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases. Planta 190: 206–220.

    Google Scholar 

  • Reid, J.S.G., Edwards, M., Gidley, M.J. and Clark, A.H. 1995. Enzyme specificity in galactomannan biosynthesis. Planta 195: 489–495.

    Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2000. The cellulose synthase superfamily. Plant Physiol. 124: 495–498.

    Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining Csl function. Plant Mol. Biol., this issue.

    Google Scholar 

  • Roemer, T., Paravicini, G., Payton M.A. and Bussey, H. 1994. Characterization of the yeast (1,6)-β-glucan biosynthetic components, Kre 6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J. Cell Biol. 127: 567–579.

    Google Scholar 

  • Saxena, I.M., Lin, F.C., Brown, R.M. Jr. 1990. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol. 15: 673–683.

    Google Scholar 

  • Saxena, I.M., Brown, R.M. Jr., Fevre, M., Geremia, R.A. and Henrissat, B. 1995. Multidomain architecture of β-glucosyl transferases: implications for mechanism of action. J. Bact. 177: 1419–1424.

    Google Scholar 

  • Schlüpmann, H., Bacic, A. and Read, S.M. 1993. A novel callose synthase from pollen tubes of Nicotiana. Planta 191: 470–481.

    Google Scholar 

  • Smith, B.G. and Harris, P.I. 1999. The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem. System. Ecol. 27: 33–53.

    Google Scholar 

  • Spicer, A.P., Olson, I.S. and McDonald, I.A. 1997. Molecular cloning and characterization of a cDNA encoding the third putative mammalian hyaluronan synthase. J. Biol. Chem. 272: 8957–8961.

    Google Scholar 

  • Stasinopoulis, S.I., Fisher, P.R., Stone, B.A. and Stanisich, V.A. 1999. Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology 9: 31–41.

    Google Scholar 

  • Taylor, N.G., Scheible, W.R., Cutler, S., Somerville, C.R. and Turner, S.R. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769–779.

    Google Scholar 

  • Taylor, N.G., Laurie, S. and Turner, S.R. 2001. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: 2529–2539.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    Google Scholar 

  • Turner, S.R and Somerville, C.R. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

    Google Scholar 

  • Turner, A., Bacic, A., Harris, P.J. and Read, S.M. 1998. Membrane fractionation and enrichment of callose synthase from pollen tubes of Nicotiana alata Link et Otto. Planta 205: 380–388.

    Google Scholar 

  • Turner, S., Taylor, N. and Jones, L. 2001. Mutations of the secondary wall. Plant Mol. Biol., this issue.

    Google Scholar 

  • Weigel, P.H., Hascall, V.C. and Tammi, M. 1997. Hyaluronan synthases. J. Biol. Chem. 272: 13997–14000.

    Google Scholar 

  • Wertman, K.F., Drubin, D.G. and Botstein, D. 1992. Systematic mutational analysis of the yeast ACT1 gene. Genetics 132: 208–211.

    Google Scholar 

  • Wiggins, C.A.R and Munro, S. 1998. Activity of the yeast MNNI β-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA 95: 7945–7950.

    Google Scholar 

  • Winter, H. and Huber, S.C. 2000. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit. Rev. Biochem. Mol. Biol. 35: 253–289.

    Google Scholar 

  • Wong, H.C., Fear, A.L., Calhoon, R.D., Eichinger, G.H., Mayer, R., Arnikam, D. et al. 1990. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87: 8130–8134.

    Google Scholar 

  • Wood, P.J., Weisz, J. and Blackwell, B.A. 1994. Structural studies of (1→3),(1→4)-β-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem. 71: 301–307.

    Google Scholar 

  • Zuo, I.R, Niu, Q.W., Nishizawa, N., Wu, Y., Kost, B. and Chua, N.H. 2000. KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12: 1137–1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vergara, C.E., Carpita, N.C. (2001). β-D-Glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3),(1→4)β-D-glucan synthase. In: Carpita, N.C., Campbell, M., Tierney, M. (eds) Plant Cell Walls. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0668-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0668-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3861-4

  • Online ISBN: 978-94-010-0668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics