Skip to main content

Mutations of the secondary cell wall

  • Chapter
Plant Cell Walls

Abstract

It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C4H:

cinnamate 4-hydroxylase

CCR:

cinnamoyl-CoA reductase

CCoAOMT:

cinnamoyl-CoA O-methyltransferase

DP:

degree of polymerization

F5H:

ferulate 5-hydroxylase

IRX:

irregular xylem

References

  • Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J. and Williamson, R.E. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Google Scholar 

  • Bacic, A., Harris, P.J. and Stone, B.A. 1988. Structure and function of plant cell walls. In: P.K Stumpf (Ed.) The Biochemistry of Plants, Academic Press, New York, pp. 297–371.

    Google Scholar 

  • Barrière, Y. and Argillier, O. 1993. Brown-midrib genes of maize: a review. Agronomie 13: 865–876.

    Google Scholar 

  • Baskin, T.I., Betzner, A.S., Hoggart, R., Cork, A. and Williamson, R.E. 1992. Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19: 427–437.

    Google Scholar 

  • Baucher, M., Monties, B., Van Montagu, M. and Boerjan, W. 1998. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17: 125–197.

    Google Scholar 

  • Boudet, A.-M. 1998. A new view of lignification. Trends Plant Sci. 3: 67–71.

    Google Scholar 

  • Campbell, M. and Rogers, L. 2001. Spatial and temporal regulation of lignin biosynthesis. Plant Mol. Biol., this issue.

    Google Scholar 

  • Campbell, M.M. and Sederoff, R.R. 1996. Variation in lignin content and composition. Plant Physiol. 110: 3–13.

    Google Scholar 

  • Callo-Delgado, A., Metzlaff, K. and Bevan, M. 2000. The elil mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127: 3395–3405

    Google Scholar 

  • Chapple, C.C.S., Vogt, T., Ellis, B.E. and Somerville, C.R 1992. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4: 1413–1424.

    Google Scholar 

  • Cheng, J.-C, Lertpiriyapong, K, Wang, S., and Sung, Z.R. 2000. The role of the Arabidopsis ELD1 gene in cell development and photomorphogenisis in darkness. Plant Physiol. 123: 509–520.

    Google Scholar 

  • Cherney, J.H., Cherney, D.J.R., Akin, D.E. and Axtell, J.D. 1991. Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv. Agron. 46: 157–198.

    Google Scholar 

  • Cutler, S. and Somerville, C.R 1997. Cellulose synthesis: cloning in silico. Curro Biol. 7: R108–R111.

    Google Scholar 

  • Englehardt, J. 1995. Sources, industrial derivatives and commercial applications of cellulose. Carbohydrate Res. 12: 5–14.

    Google Scholar 

  • Franke, R., McMichael, C.M., Meyer, K., Shirley, A.M., Cusumano, J.C. and Chapple, C. 2000. Modified lignin in tobacco and popular plants overexpressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 22: 223–234.

    Google Scholar 

  • Gorshkova, T.A., Wyatt, S.E., Salnikov, V.V. Gibeaut, D.M. Ibragimov, M.R. Lozovaya, V.V. and Carpita, N.C. 1996. Cell-wall polysaccharides of developing flax plants. Plant Physiol. 110: 721–729.

    Google Scholar 

  • Grand, C., Parmentier, P., Boudet, A. and Boudet, A.M. 1985. Comparison of lignins and of enzymes involved in lignification in normal and brown midrib (bm3) mutant com seedlings. Physiol. Veg. 23: 905–911.

    Google Scholar 

  • Groover, A. and Jones, A.M. 1999. Tracheary element differentiation uses a novel mechanism co-ordinating programmed cell death and secondary cell wall synthesis. Plant Physiol. 119: 375–384.

    Google Scholar 

  • Halpin, C., Holt, K., Chojecki, J., Oliver, D., Chabbert, B., Monties, B., Edwards, K, Barakate, A. and Foxon, G.A. 1998. Brown-midrib maize (bm1): a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 14: 545–553.

    Google Scholar 

  • Halpin, C., Barakate, A., Askari, B. Abbott, J. and Ryan, M. 2001. Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol. Biol., this issue.

    Google Scholar 

  • Hori, H. and Elbein, A.D. 1985. The biosynthesis of plant cell wall polysaccharides. In: T. Higuchi (Ed.) Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, FL, pp. 109–139.

    Google Scholar 

  • Humphreys, J.M., Hemm, M.R. and Chapple, C. 1999. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 96: 10045–10050.

    Google Scholar 

  • Jones, L. Ennos, A.R. and Turner S.R. 2001. Cloning and characterisation of irregular xylem4 (irx4) a severely lignin deficient mutant of Arabidopsis. Plant J 26: 205–216.

    Google Scholar 

  • Kimura, S., Sakurai, N. and Itoh, T. 1999. Different distribution of cellulose synthesizing complexes in brittle and non-brittle strains of barley. Plant Cell Physiol. 40: 335–338.

    Google Scholar 

  • Kohel, R.J., Benedict, C.R. and Jividen, G.M. 1993. Incorporation of [14C]glucose into crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci 33: 1036–1040.

    Google Scholar 

  • Kokubo, A., Kuraishi, S. and Sakurai, N. 1989. Culm strength of barley. Plant Physiol. 91: 876–882.

    Google Scholar 

  • Kokubo, A., Sakurai, N., Kuraishi, S. and Takeda, K. 1991. Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol. 97: 509–514.

    Google Scholar 

  • Lapierre, C., Pollet, B., Mackay, J.J. and Sederoff, R.R. 2000. Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase. J. Agric. Food Chem. 48: 2326–2331.

    Google Scholar 

  • Lewis, N.G. and Yamamoto, E. 1990. Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 455–496.

    Google Scholar 

  • Mackay, J.J., O’Malley, D.M., Presnell, T., Booker, F.L., Campbell, M.M., Whetten, R.W. and Sederoff, R.R. 1997. Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. USA 94: 8255–8260.

    Google Scholar 

  • Marita, J.M., Ralph, J., Hatfield, R.D. and Chapple, C. 1999. NMR characterisation of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase. Proc. Natl. Acad. Sci. USA 96: 12328–12332.

    Google Scholar 

  • Mellerowicz, E.J., Baucher, M., Sundberg, B. and Boerjan, W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol., this issue

    Google Scholar 

  • Meyer, K., Cusumano, J.C., Somerville, C. and Chapple, C.C.S. 1996. Ferulate 5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl. Acad. Sci. USA 93: 6869–6874.

    Google Scholar 

  • Meyer, K, Shirley, A.M., Cusumano, J.C., Bell-Lelong, D.A. and Chapple, C. 1998. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monoxygenase in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 6619–6623.

    Google Scholar 

  • Morrow, S.L., Mascia, P., Self, K.A. and Altschuler, M. 1997. Molecular characterization of a brown midrib3 deletion mutation in maize. Mol. Breed. 3: 351–357.

    Google Scholar 

  • Pear, J.P., Kawagoe, Y., Schreckengost, W.E., Delmer. D.P. and Stalker, D.M. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA 93: 12637–12642.

    Google Scholar 

  • Potikha, T. and Delmer, D.P. 1995. A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J. 7: 453–460.

    Google Scholar 

  • Ralph, J., Mackay, J.J., Hatfield, R.D., O’Malley, D.M., Whetten, R.W. and Sederoff, R.R. 1997. Abnormal lignin in a loblolly pine mutant. Science 277: 235–239.

    Google Scholar 

  • Ratcliffe, O.J., Riechmann, J.L. and Zhang, J. 2000. Interfascicular fiberlessI is the same gene as revoluta. Plant Cell 12: 315–317.

    Google Scholar 

  • Talbert, P.B., Adler, H.T. and Parks, B. 1995. The revoluta gene is necessary for apical meristem development and for limiting cell division in the leaves and stems of Arabidopsis thaliana. Development 121: 2723–2735.

    Google Scholar 

  • Taylor, N.G., Scheible, W-R., Cutler, S., Somerville, C.R. and Turner, S.R. 1999. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769–779.

    Google Scholar 

  • Taylor, N.G., Laurie, S. and Turner S.R. 2000. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12: 2529–2540.

    Google Scholar 

  • Turner S.R. and Hall, M. 2000. The gapped xylem mutant identifies a common regulatory step in secondary cell wall deposition. Plant J. 24: 477–488.

    Google Scholar 

  • Turner, S.R. and Somerville, C.R. 1997. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9: 689–701.

    Google Scholar 

  • Vignols, F., Rigau, J., Torres, M.A., Capellades, M. and Puigdomènech, P. 1995. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7: 407–416.

    Google Scholar 

  • Wu, R.L., Remington, D.L., Mackay, J.J., Mckeand, S.E. and O’Malley, D.M. 1999. Average effect of a mutation in lignin biosynthesis in loblolly pine. Theor. Appl. Genet. 99: 705–710.

    Google Scholar 

  • Yeo, U.-D., Soh, W-Y., Tasaka, H., Sakurai, N., Kuraishi, S. and Takeda, K. 1995. Cell wall polysaccharides of callus and suspension-cultured cells from three cellulose-less mutants of barley (Hordeum vulgare L.). Plant Cell Physiol. 36: 931–936.

    Google Scholar 

  • Zhong, R.Q. and Ye, Z.H. 1999. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11: 2139–2152.

    Google Scholar 

  • Zhong, R., Taylor, J.J. and Ye, Z.-H. 1997. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 9: 2159–2170.

    Google Scholar 

  • Zhong, R., Ripperger, A. and Ye, Z.-H. 2000. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiol. 123: 59–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Turner, S.R., Taylor, N., Jones, L. (2001). Mutations of the secondary cell wall. In: Carpita, N.C., Campbell, M., Tierney, M. (eds) Plant Cell Walls. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0668-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0668-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3861-4

  • Online ISBN: 978-94-010-0668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics