Skip to main content

Representations of Gabor frame operators

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 33))

Abstract

Gabor theory is concerned with expanding signals f as linear combinations of elementary signals that are obtained from a single function g (the window) by shifting it in time and frequency over integer multiples of a time shift parameter a and a frequency shift parameter b. In these expansion problems a key role is played by the Gabor frame operator associated with the set of elementary signals used in the expansions. The Gabor frame operator determines whether stable expansions exist for any finite-energy signal / (that is, whether we have indeed a frame), and, if so, gives a recipe for computing the expansion coefficients by using the canonically associated dual frame. In this contribution we consider the Gabor frame operator and associated dual frames in the time domain, the frequency domain, the time-frequency domain, and, for rational values of the sampling factor (ab)-1, the Zak transform domain. We thus have the opportunity to address the basic problems—whether we have a Gabor frame and how we can compute a dual frame—in any of these domains we find, depending on g and a, b, convenient. The representations in the time domain and the frequency domain are conveniently discussed in the more general context of shift- invariant systems, and for this we present certain parts of what is known as Ron-Shen theory, adapted to our needs with emphasis on computational aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor, Theory of communication, J. Inst. Elec. Eng. (London), 93 (1946), pp. 429–457.

    Google Scholar 

  2. J. von Neumann, “Mathematical Foundations of Quantum Mechanics”, Princeton, 1955, p. 407.

    Google Scholar 

  3. M.R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis, IEEE Trans. ASSP, 28 (1980), pp. 55–69.

    Article  MATH  Google Scholar 

  4. M.J. Bastiaans, Gabor’s expansion of a signal into Gaussian elementary signals, Proc. IEEE, 68 (1980), pp. 538–539.

    Article  Google Scholar 

  5. A.J.E.M. Janssen, Gabor representation of generalized functions, J. Math. Anal. Appl., 83 (1981), pp. 377–394.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.M. Lerner, Representations of signals, Ch. 10 in “Lectures in Communication System Theory”, ed. EJ. Baghdady, McGraw-Hill, 1961.

    Google Scholar 

  7. A.M. Perelomov, Remark on the completeness of the coherent states system, Teoret. Mat. Fiz., 6 (1971), pp. 213–224.

    MathSciNet  Google Scholar 

  8. V. Bargmann, P. Butera, L. Girardello and J.R. Klauder, On the completeness of the coherent states, Rep. Math. Phys., 2 (1971), pp. 221–228.

    Article  MathSciNet  Google Scholar 

  9. H. Bacry, A. Grossmann and J. Zak, Proof of the completeness of lattice states in the kq-representation, Phys. Rev. B, 12 (1975), pp. 1118–1120.

    Article  Google Scholar 

  10. A.J.E.M. Janssen, Bargmann transform, Zak transform, and coherent states, J. Math. Phys., 23 (1982), pp. 720–731.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.J. Davis and EJ. Heller, Semiclassical Gaussian basis set method for molecular vibrational wave functions, J. Chem. Phys., 71 (1979), pp. 3383–3395.

    Article  Google Scholar 

  12. H.G. Feichtinger, On a new Segal algebra, Monatsh. Math., 92 (1981), pp. 269–289.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.G. Feichtinger and K.-H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, J. Funct. Anal., 86 (1989), pp. 307–340 (part 1) and Monatsh. Math., 108 (1989), pp. 129-148 (part 2).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271–1283.

    Article  MathSciNet  MATH  Google Scholar 

  15. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc, 72 (1952), pp. 341–366.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Daubechies, “Ten Lectures on Wavelets”, SIAM, Philadelphia, 1992.

    Book  Google Scholar 

  17. H.G. Feichtinger and T. Strohmer (eds.), “Gabor Analysis and Algorithms”, Birkhäuser, Boston, 1998.

    Google Scholar 

  18. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31 (1989), pp. 628–666.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of L2(Rd), Canadian J. Math., 47 (1995), pp. 1051–1094.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Ron and Z. Shen, Weyl-Heisenberg systems and Riesz bases in L2(Rd), Duke Math. J., 89 (1997), pp. 237–282.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl., 165 (1992), pp. 479–504.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Tolimieri and R.S. Orr, Poisson summation, the ambiguity function and the theory of Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1 (1995), pp. 233–247.

    Article  MathSciNet  MATH  Google Scholar 

  23. A.J.E.M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1 (1995), pp. 403–436.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Wexler and S. Raz, Discrete Gabor expansions, Signal Processing, 21 (1990), pp. 207–220.

    Article  Google Scholar 

  25. M. Zibulski and Y.Y. Zeevi, Oversampling in the Gabor scheme, IEEE Trans. Signal Proc, 41 (1993), pp. 2679–2687.

    Article  MATH  Google Scholar 

  26. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36 (1990), pp. 961–1005.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.J.E.M. Janssen, The duality condition for Weyl-Heisenberg frames, Ch. 1 in “Gabor Analysis and Applications”, eds. H.G. Feichtinger and T. Strohmer, Birkhäuser, Boston, 1998.

    Google Scholar 

  28. P.G. Casazza, O. Christensen and A.J.E.M. Janssen, Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, submitted to J. Funct. Anal., May 1999.

    Google Scholar 

  29. I. Daubechies, H.J. Landau and Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl., 1 (1995), pp. 437–478.

    Article  MathSciNet  MATH  Google Scholar 

  30. A.J.E.M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comp. Harm. Anal., 1(1994), pp. 350–354.

    Article  MATH  Google Scholar 

  31. A.J.E.M. Janssen, The Zak transform: a signal transform for sampled, time-continuous signals, Philips J. Res., 43 (1988), pp. 23–69.

    MathSciNet  MATH  Google Scholar 

  32. A.J.E.M. Janssen, On rationally oversampled Weyl-Heisenberg frames, Signal Processing, 47 (1995), pp.239–245.

    Article  MATH  Google Scholar 

  33. M.A. Rieffel, Von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann., 257 (1981), pp. 403–418.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.J. Benedetto, C. Heil and D. Walnut, Differentiation and the Balian-Low theorem, J. Fourier Anal. Appl., 1(1995), pp. 344–402.

    MathSciNet  Google Scholar 

  35. A.J.E.M. Janssen, A density theorem for time-continuous filter banks, pp. 513–523 in “Signal and Image Representation in Combined Spaces”, eds. Y. Zeevi and R. Coifman, Academic Press, San Diego, 1998.

    Chapter  Google Scholar 

  36. Y.I. Lyubarskii and K. Seip, Convergence and summability of Gabor expansions at the Nyquist density, J. Fourier Anal. Appl., 5 (1999), pp. 127–157.

    Article  MathSciNet  MATH  Google Scholar 

  37. A.J.E.M. Janssen, Some Weyl-Heisenberg frame bound calculations, Indag. Mathem., 7 (1996), pp. 165–182.

    Article  MATH  Google Scholar 

  38. H.G. Feichtinger and A.J.E.M. Janssen, Validity of WH-frame bound conditions depends on lattice pa-rameters, Appl. Comp. Harm. Anal., 8 (2000), pp. 104–112.

    Article  MathSciNet  MATH  Google Scholar 

  39. A.J.E.M. Janssen, On Zak transforms with few zeros, preprint (1999).

    Google Scholar 

  40. S. Jaffard, Propriétés des matrices bien localisées prés de leur diagonale et quelques applications, Ann. Inst. Henri Poincaré, 7 (1990), pp. 461–476.

    MathSciNet  MATH  Google Scholar 

  41. H. Bölcskei and A.J.E.M. Janssen, Gabor frames, unimodularity and window decay, to appear in J. Fourier Anal. Appl. (2000).

    Google Scholar 

  42. A.J.E.M. Janssen, From continuous to discrete Weyl-Heisenberg frames through sampling, J. Fourier Anal. Appl., 3 (1997), pp. 583–596.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Janssen, A.J.E.M. (2001). Representations of Gabor frame operators. In: Byrnes, J.S. (eds) Twentieth Century Harmonic Analysis — A Celebration. NATO Science Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0662-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0662-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7169-4

  • Online ISBN: 978-94-010-0662-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics