Skip to main content

Some polynomial extremal problems which emerged in the twentieth century

  • Chapter
Twentieth Century Harmonic Analysis — A Celebration

Part of the book series: NATO Science Series ((NAII,volume 33))

Abstract

Most of the “extremal problems” of Harmonic (or Fourier) Analysis which emerged before the year 2000 were actually born in the twentieth century, and their emergences were scattered throughout that century, including the two world war periods. A great many of these problems pertain to polynomials, trigonometric polynomials and (finite) exponential sums. Writing a reasonably complete monograph on this huge subject (even if we choose to restrict it to polynomials only) would be a monumental task, although the literature does indeed contain some valuable monographs on various aspects of the subject. The present text just touches upon a number of extremal problems on polynomials and trigonometric polynomials, with the hope of expanding this same text in the near future to a much larger version, and ultimately to a “reasonably complete” monograph (but only with the help of other mathematicians.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Arsac. Fourier Transforms and the Theory of Distributions. Prentice Hall, 1966.

    Google Scholar 

  2. L. D. Baumert. Cyclic Difference Sets. Lecture Notes in Mathematics 182, Springer-Verlag, 1971.

    Google Scholar 

  3. S. N. Bernstein. On the order of the best approximation of continuous functions by polynomials of given degree. Memoirs of the Royal Academy of Belgium (2), 4, pages 1–103, 1912. (French)

    Google Scholar 

  4. S. N. Bernstein. Lectures on extremal properties and the best approximation of analytic functions of a real variable Gauthiers-Villars, 1926. (Reprinted as the first part of “Approximation” by S. N. Bernstein and C. de La Vallée Poussin, Chelsea, New York, 1970). (French).

    Google Scholar 

  5. G. Björck. Functions of modulus one on Zp whose Fourier transforms have constant modulus. Proceedings of A. Haar Memorial Conference, 1985, Colloq. Math. Soc. János Bolyai 49, pages 193-197, 1985.

    Google Scholar 

  6. G. Björck. Functions of modulus 1 on Zn whose Fourier transforms have constant modulus, and “cyclic n-roots”. Proceedings of the 1989 NATO Advanced Study Institute on “Recent Advances in Fourier Analysis and Its Applications”,]. S. Byrnes& J. L. Byrnes, ed., pages 131–140, 1990.

    Google Scholar 

  7. G. Björck & B. Saffari. New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries. C. R. Acad. Sci. Paris, Ser. I Math. 320, No. 3, pages 319–324, 1995.

    MathSciNet  MATH  Google Scholar 

  8. R. P. Boas, Jr. Inequalities for the derivatives of polynomials, Math. Mag. 42, pages 165–174, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Borwein. Home page, with (fairly) complete list of publications, on Web site of Math. Dept., Simon Fraser University. Updated 2000-2001. (c.f. Ref. [14]).

    Google Scholar 

  10. J. S. Byrnes. On polynomials with coefficients of modulus one. Bull. London Math. Soc. 9, pages 171–176, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. De La Vallée Poussin. Sur la convergence des formules d’interpolation entre ordonnées équidistantes, Acad. Roy. Belg. Bull. Cl. Sci (5), pages 319–410, 1908. (French)

    Google Scholar 

  12. C. De La Vallée Poussin. Lectures on approximation of functions of a real variable, 1919. (Reprinted as the second part of “Approximation” by S. N. Bernstein and C. de La Vallée Poussin, Chelsea, New York, 1970). (French)

    Google Scholar 

  13. P. Enflo. Oral question about a uniqueness property of Gauss sequences of prime length, Stockholm University, 1983.

    Google Scholar 

  14. T. Erdelyi. Home, page with (fairly) complete list of publications, on Web site of Math. Dept., Texas A&M University. Updated 2000-2001. (c.f. Ref. [9]).

    Google Scholar 

  15. L. Fejér. Über konjugierte trigonometrische Reihen, J. Reine Angew. Math. 144, pages 48–56, 1914.

    MATH  Google Scholar 

  16. M. Fekete. Über einen Satz des Herrn Serge Bernstein, J. Reine Angew. Math. 146, pages 88–94, 1916.

    Google Scholar 

  17. C. Frappier. Some extremal problems for polynomials and entire functions of exponential type. Ph. D. thesis, University of Montreal, 1983. (French).

    Google Scholar 

  18. S. W. Golomb. Cyclic Hadamard difference sets. SETA’98 (Proceedings of December 1998 Conference on “Sequences and their applications”, Singapore). World Scientific, 2000.

    Google Scholar 

  19. U. Haagerup. Personal letter (in Danish) to G. Björck, with copy to B. Saffari, 1995.

    Google Scholar 

  20. E. Landau. Personal letter to S.N. Bernstein, 1912.

    Google Scholar 

  21. E. Landau. Bemerkungen zu einer Arbeit von Herrn Carlemann. Math. Zeit. Bd 5, 1919.

    Google Scholar 

  22. J. E. Littlewood. Some Problems in Real and Complex Analysis, Heath Mathematical Monographs, Heath&Co., 1968.

    Google Scholar 

  23. G. G. Lorentz. Approximation of Functions. Holt, Rinehart&Winston, 1966.

    MATH  Google Scholar 

  24. L. Lovász. Private communication to G. Björck, 1983.

    Google Scholar 

  25. A. A. Markov. On a question posed by D. I. Mendeleiev. Bulletin of the Academy of Sciences of St. Petersburg 62, pages 1-24, 1889. (Reprinted in “Selected Works”, Izdat. Akad. SSSR, Moscow, pages 51-75,1948. (Russian)

    Google Scholar 

  26. Z. A. Melzak. Companion to Concrete Mathematics, vol II, Wiley, 1976.

    Google Scholar 

  27. D. I. Mendeleiev. Study of aqueous dissolutions, based on changes of their specific weights. St. Petersburg, 1887. (Russian).

    Google Scholar 

  28. H. L. Montgomery. An exponential polynomial formed with the Legendre symbol. Acta Arithmetica, vol 38, pages 375–380, 1980.

    Google Scholar 

  29. R. E. A. C. Paley. On Orthogonal Matrices, J. Math, and Phys. 12, pages 311–320, 1933.

    Google Scholar 

  30. S. K. Pichorides & B. Saffari. A proof by interpolation of a theorem of Szegö. Private manuscript, 1980. (presented in Ref. [36], 1980-1981).

    Google Scholar 

  31. Q. I. Rahman. Applications of Functional Analysis to Extremal Problems for Polynomials. Presses. Univ. Montréal, 1968.

    Google Scholar 

  32. Q. I. Rahman& G. Schmeisser. Les inégalités de Markov et de Bernstein. Presses Univ. Montréal, 1983.

    Google Scholar 

  33. H. J. Ryser. Combinatorial Mathematics. Cams Math. Monographs 14, Wiley, 1963.

    Google Scholar 

  34. F. Riesz. On trigonometric polynomials. C. R. Acad. Sci. Paris, vol 158, pages 1657–1661, 1914. (French)

    MATH  Google Scholar 

  35. M. Riesz. Interpolation formula for the derivative of a trigonometric polynomial. C. R. Acad. Sci. Paris VOL. 158, DPP. 1152–1154, 1914. (French)

    MATH  Google Scholar 

  36. B. Saffari. An interpolation proof of Szegö’s inequality by S. K. Pichorides and myself. In “Extremal problems on trigonometric polynomials”, Postgraduate Course at Univ. of Geneva, Switzerland, 1980-1981.

    Google Scholar 

  37. B. Saffari. New unimodular polynomials with vanishing periodic autocorrelations. Research report, Prometheus Inc., Newport, RI, 1990.

    Google Scholar 

  38. B. Saffari. Perfect flatness of polynomials with coefficients ±1 on groups of roots of unity. Private manuscript, 1998.

    Google Scholar 

  39. B. Saffari, Twentieth century extremal problems on polynomials and exponential sums, extended version of this paper, (in preparation).

    Google Scholar 

  40. G. Schaake& J. G. van der Corput. Ungleichungen für Polynome und trigonometrische Polynome. Compositio Math, vol 2, pages 321–361, 1935.

    MathSciNet  MATH  Google Scholar 

  41. G. Schaake& J. G. van der Corput. Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome. Compositio Math, vol 3, page 128, 1936.

    MathSciNet  Google Scholar 

  42. G. Szegö. Über einen Satz des Herrn Serge Bernstein. Schriften der KÜnigsberger Gelehrten Gesellschaft, pages 59–70, 1928.

    Google Scholar 

  43. G. Szegö & A. Zygmund. On certain mean values of Polynomials, J. d’Analyse Math, vol 3, pages 225–244, 1953-1954.

    Google Scholar 

  44. A. Zygmund. Trigonometrie Series. Cambridge at the University Press, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saffari, B. (2001). Some polynomial extremal problems which emerged in the twentieth century. In: Byrnes, J.S. (eds) Twentieth Century Harmonic Analysis — A Celebration. NATO Science Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0662-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0662-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7169-4

  • Online ISBN: 978-94-010-0662-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics