Continuum Damage and Scaling of Fracture

  • G. Pijaudier-Cabot
  • C. Le Bellego
  • B. Gerard
Part of the NATO Science Series book series (NAII, volume 32)


This paper presents a simple application of continuum damage modelling to failure analysis. An isotropic damage model is described and its non local enhancement discussed. The calibration of the model parameters is addressed with the help of structural size effect data. Such a size effect is a feature of non local models and is also observed experimentally. We show that this scaling law of fracture can be a convenient tool for the purpose of model calibration, and in particular for the determination of the internal length which is introduced in non local models.


Damage Model Strain Softening Fracture Process Zone Internal Length Quasibrittle Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bazant, Z.P. (1976), Intsability, ductility and size effect in strain softening concrete, J. Engng. Mech. ASCE, 102, 331–344.Google Scholar
  2. [2]
    Bazant, Z.P., and Pijaudier-Cabot, G. (1989), Measurement of the characteristic length of non local continuum, 7. Engrg. Mech. ASCE, 115, 755–767.Google Scholar
  3. [3]
    Bazant, Z.P., and Planas, J. (1998), Fracture and size effect in concrete and other quasibrittle Materials, CRC Press.Google Scholar
  4. [4]
    Le Bellego, C. (2001), Couplages chimie-mécanique dans les structures en béton attaquées par l’eau: Etude expérimentale et analyse numérique, Thèse de doctorat de TENS Cachan, France.Google Scholar
  5. [5]
    Lemaitre J. (1992), A Course on damage mechanics, Springer Verlag.Google Scholar
  6. [6]
    Mazars, J. (1984), Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure, Thèse de Doctorat ès Sciences, Université Paris 6, France.Google Scholar
  7. [7]
    Mazars, J., and Pijaudier-Cabot, G. (1996), From damage to fracture mechanics and conversely: a combined approach, Int. J. Solids. Struct., 33, 3327–3342CrossRefGoogle Scholar
  8. [8]
    Peerlings, R.H., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P. (1996), Gradient enhanced damage for quasi-brittle materials, Int. J. Num. Meth. Engrg., 39, 3391–3403.CrossRefGoogle Scholar
  9. [9]
    Pijaudier-Cabot, G. (1995), Non local damage, Continuum Models for Materials with Microstructure, edited by H.B. Muhlhaus, Wiley Pubs., 105–144.Google Scholar
  10. [10]
    Pijaudier-Cabot, G., and Bazant, Z.P. (1987), Non local damage theory, J. of Engrg. Mech. ASCE, 113, 1512–1533.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • G. Pijaudier-Cabot
    • 1
  • C. Le Bellego
    • 2
  • B. Gerard
    • 2
  1. 1.R&DO, Laboratoire de Génie Civil de Nantes — Saint Nazaire, Ecole Centrale de NantesNantes cedex 3France
  2. 2.LMT-CACHAN and EDF R&D, ENS CachanWilsonFrance

Personalised recommendations