Skip to main content

Brittle Fracture of Snow

  • Chapter
Physical Aspects of Fracture

Part of the book series: NATO Science Series ((NAII,volume 32))

Abstract

Snow is a foam of ice. It shows a brittle to ductile transition (activation energy 0.6eV) as function of strain rate and temperature. Measured values of the fracture toughness KIc in the brittle regime are used in a theory of slab avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobbs, P.V., 1974, Physics of Ice. Oxford: Clarendon Press.

    Google Scholar 

  2. Schulson, E.M., 1999, The Structure and Mechanical Behaviour of Ice. JOM February 1999, 21–27.

    Google Scholar 

  3. Schulson, E.M., 2000. Ice: Mechanical Properties. Manuscript for the Encyclopaedia of Materials Science.

    Google Scholar 

  4. Nakaya, U., 1954, Snow Crystals. Cambridge: Harvard University Press.

    Google Scholar 

  5. Gubler, H., 1996, Physik von Schnee. Vorlesungsmanuskript ETH.

    Google Scholar 

  6. Mellor, M., 1974, A review of basic snow mechanics. IAHS Publ. no. 114, 251–291.

    Google Scholar 

  7. Bentley, W.A., and W.J. Humphreys, 1963, Snow Crystals, New York: Dover.

    Google Scholar 

  8. Dobrowolski, A.B., Historja Naturaina Lodu, Warsaw 1923.

    Google Scholar 

  9. The Encyclopaedia Britannica, eleventh edition, vol. 26, 1910-1911.

    Google Scholar 

  10. Colbeck, S.C., 1980, Thermodynamics old snow metamorphism due to variations in curvature. J. Glaciology 26, 291–301.

    Google Scholar 

  11. McClung, D., and Schaerer, P., 1998. The Avalanche Handbook, fourth printing. Seattle: The Mountaineers, p. 44.

    Google Scholar 

  12. Bader, H., et al., 1939, Der Schnee und seine Metamorphose. Davos, Switzerland.

    Google Scholar 

  13. Golubev, V.N., and Frolov, A.D., 1998, Modelling the change in structure and mechanical properties in dry-snow densification to ice. Annals of Glaciology, 26, 45–50.

    Google Scholar 

  14. Gibson, L.J., and Ashby, M.F., 1988, Cellular solids. Oxford: Pergamon Press.

    Google Scholar 

  15. Kirchner, H.O.K., Michot, G., and Suzuki, T., 2000, Fracture toughness of snow in tension. Phil. Mag. A 80, 1265–1272.

    Article  Google Scholar 

  16. Brzoska, J.-B., Coleou, C, Lesaffre, B., Borei, S., Brissaud, O., Ludwig, W., Boiler, E., and Baruchel, J., 2000, 3D Visualization of Snow Samples by Microtomography at Low Temperature. ESRF Newsletter April 1999, 22–23.

    Google Scholar 

  17. Barnes, P., Tabor, D., and Walker, J.C.F., 1971, The friction and creep of polycristalline ice. Proc. Roy. Soc. Lond. A 324, 127–155.

    Article  CAS  Google Scholar 

  18. Arakawa, M., and Maeono, N., 1997, Mechanical Strength of polycrystalline ice under uniaxial compression. Cold Regions Science and Technology 26, 215–229.

    Article  Google Scholar 

  19. Weertman, J., 2000, Microstructural Mechanisms in Creep. In: Mechanics and Materials, edited by M.A. Meyers, R.W. Armstrong and H. Kirchner. New York, Wiley.

    Google Scholar 

  20. Ramseier, R.O., 1967. J. Appl. Phys. 38, 2553.

    Article  CAS  Google Scholar 

  21. Yamamoto, Y., 1981, M.S. Thesis, Hokkaido University.

    Google Scholar 

  22. Hondoh, T., Iwamatsu, H., and Mae, S., 1990, Dislocation mobility for non-basal glide in ice measured by in situ X-ray topography. Phil. Mag. A 62, 89–102.

    Article  CAS  Google Scholar 

  23. Weiss, J., and Schulson, E.M., 2000, Grain-boundary sliding and crack nucleation in ice. Phil. Mag. A 80, 279–300.

    Article  CAS  Google Scholar 

  24. Narita, H., 1980, Mechanical Behaviour and structure of snow under uniaxial stress. J. Glaciology 26, 275–282.

    Google Scholar 

  25. Narita, H., 1983, An Experimental Study on the Tensile Fracture of Snow. Contribution no. 2625 of the Institute of Low Temperature Physics, Hokkaido University, Japan, pp. 1–37.

    Google Scholar 

  26. Kirchner, H.O.K., Michot, G., Narita, H., and Suzuki, T., 2000, Plasticity and fracture of snow: the brittle-ductile transition. Phil. Mag. A, in the press.

    Google Scholar 

  27. McClung, D., and Schaerer, P., 1998. The Avalanche Handbook, fourth printing. Seattle: The Mountaineers.

    Google Scholar 

  28. Morales, B., 1966, The Huascaran Avalanche in the Santa Valley, Peru. International Symposium on Scientific Aspects of Snow and Ice Avalanches, 5-10 April 1965, Davos, Switzerland. Publication no. 69 de I’AIHS, Gentbrugge, Belgium.

    Google Scholar 

  29. Gsteiger, F., and Loppow, B., 1999, Das Gipfeltreffen. DIE ZEIT 18. 2. 99, 51–52.

    Google Scholar 

  30. Kirchner, H.O.K., and Michot, G., 2000, in preparation.

    Google Scholar 

  31. Olurin, O.B., Fleck, N.A., and Ashby, M.F., 2000, Indentation resistance of an aluminium foam. Scripta mat., to be published.

    Google Scholar 

  32. Foehn, P.M.B., 1987, The stability index and various triggering mechanisms. International Association of Hydrological Sciences Publication 162 (Symposium at Davos 1986 — Avalanche Formation, Movement and Effects), 195–214.

    Google Scholar 

  33. Jamieson, J.B., and Johnston, CD., 1998, Refinements to the stability index for skier-triggered dry-slab avalanches. Annals of Glaciology 26, 296–302.

    Google Scholar 

  34. Louchet, F., 2000, A transition in dry snow slab avalanche triggering modes. Ann. Glaciology, in the press.

    Google Scholar 

  35. Ancey, C., 1996, Le Bloc Norvégien. La Montagne et Alpinism, 1/96, p. 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kirchner, H.O.K. (2001). Brittle Fracture of Snow. In: Bouchaud, E., Jeulin, D., Prioul, C., Roux, S. (eds) Physical Aspects of Fracture. NATO Science Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0656-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0656-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7147-2

  • Online ISBN: 978-94-010-0656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics