Skip to main content

Stress Corrosion of Glass

  • Chapter
Physical Aspects of Fracture

Part of the book series: NATO Science Series ((NAII,volume 32))

Abstract

It has been known for a long time that silicate glasses are sensitive to static fatigue : the duration of the application of the loading has an effect on the strength of glass. The “ long term ” strength is different from the “ short term ” strength. In the present paper a short review of some practical manifestations of this phenomenon is done. Its interpretation is then overviewed: the role of ambient water is well established. It is a stress-activated chemical reaction of water from the environment with the silicon-oxygen bonds. It takes place very efficiently in the highly strained material at the tip of a surface crack. This enables its sub-critical growth to be explained. In the last part, questions and issues are presented, which, to the author’s opinion, still need to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swain, M.V., Metras, J.C. (1982) The breaking of scored glass. Glass Technology Vol 23, N°2, 120–124.

    Google Scholar 

  2. Collins, R.E. and Fisher-Cripps, A.C. (1991) Design of support pillar arrays in flat evacuated windows, Aust. J. Phys. 44, 545–63.

    Google Scholar 

  3. Burgman, J.A. and Hunia, E.M. (1970) The effect of fibre diameter, environmental moisture, and cooling time during fibre formation on the strength of E glass fibres, Glass technology, Vol. 11 N°6, 1970, 147–152.

    CAS  Google Scholar 

  4. Kurkjian, C.R. et al. (1993) Strength, degradation and coating of silica lightguides, J. Am. Ceram. Soc. 76 [5], 1106–12.

    Article  CAS  Google Scholar 

  5. Wei, T., Skutnik, B.J. (1988) Effect of coating on fatigue behavior of optical fiber, J. Non-Cryst. Sol. 102, 100–105.

    Article  CAS  Google Scholar 

  6. Swain, M. V. (1981) Nickel Sulfide inclusions in glass: an example of microcracking induced by a volumetric expanding phase change, J. Mat. Science 16, 151–158.

    Article  CAS  Google Scholar 

  7. Wiederhorn, S.M. (1967) Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50, N°8, 407–414.

    Article  CAS  Google Scholar 

  8. Freiman, S. W. (1985) Environmentally enhanced crack growth in glasses, in Strength of Inorganic Glass, C. R. Kurkjian ed., Plenum Press, New York.

    Google Scholar 

  9. Wiederhorn, S. M. and Bolz, L. H. (1970) Stress corrosion and static fatigue of glass, J. Am. Ceram. Soc. 53, N°10, 543–548.

    Article  CAS  Google Scholar 

  10. Gehrke, E., Ullner, C. and Hähnert, M. (1990) Effect of corrosive media on crack growth of model glasses and commercial silicate glasses, Glastech. Ber. 63 Nr.9

    Google Scholar 

  11. Charles, R. J. and Hillig, W. B. (1962) The kinetics of glass failure by stress corrosion, Symp. on Mechanical strength of glass and ways of improving it. USCV, Charleroi, Belgium.

    Google Scholar 

  12. Michalske, T.A. and Freiman, S.W. (1983) A molecular mechanism for stress corrosion in vitreous silica, J. Am. Ceram. Soc. 66, N°4, 284–288.

    Article  CAS  Google Scholar 

  13. Michalske, T.A. and Bunker, B.C. (1987) Steric effects in stress corrosion fracture of glass, J. Am. Ceram. Soc. 70, N°10, 780–84.

    Article  CAS  Google Scholar 

  14. Michalske, T.A. and Bunker, B.C. (1993) A Chemical kinetics model for glass fracture, J. Am. Ceram. Soc. 76, N°10, 2613–2318.

    Article  CAS  Google Scholar 

  15. White, G.S., Freiman, S.W., Wiederhorn, S.M. and Coyle, T.D. (1987) Effects of counterions on crack growth in vitreous silica, J. Am. Ceram. Soc. 70, N°12, 891–895.

    Article  CAS  Google Scholar 

  16. Gehrke, E., Ullner, Ch. and Hähnert, M. (1991) Fatigue limit and crack arrest in alkali-containing silicate glasses, J. Mat. Science 26, 5445–5455.

    Article  CAS  Google Scholar 

  17. Bando, Y., Ito, S. and Tomozawa, M. (1984) Direct observation of crack tip geometry of SiO2 glass by high-resolution electron microscopy, J. Am. Ceram. Soc. 67, N°3, C36–C37.

    CAS  Google Scholar 

  18. Nghiêm, B. (1998) Fracture du verre et hétérogénéités à l’échelle submicronique, Thèse, Université Paris-VI.

    Google Scholar 

  19. Hénaux, S. and Creuzet, F. (1997) Kinetics fracture of glass at the nanometer scale, J. Mat. Science. Lett. 16, 1008–1011.

    Article  Google Scholar 

  20. Stavrinidis, B., Holloway, D.G. (1983) Crack healing in glass, Phys. and Chem. of Glasses Vol. 24, N°l.

    Google Scholar 

  21. Han, W.-T. and Tomozawa, M. (1989) Mechanism of mechanical strength increase of soda-lime glass by aging, J. Am. Ceram. Soc. 72, N°10, 1837–1843.

    Article  CAS  Google Scholar 

  22. Marshall, D.B. and Lawn, B.R. (1985) Surface flaws in glass, in Strength of Inorganic Glass, C. R. Kurkjian ed., Plenum Press, New York.

    Google Scholar 

  23. Lawn, B.R. Marshall, D.B., and Dabbs, T.P. (1985) Fatigue strength of glass: a controlled flaw study, in Strength of Inorganic Glass, C. R. Kurkjian ed., Plenum Press, New York.

    Google Scholar 

  24. Lawn, B.R. (1993) Fracture of Brittle Solids — Second Edition, Cambridge University Press.

    Google Scholar 

  25. Ritter, J.E. Ray, CA. and Jakus K. (1986) Dynamic fatigue of soda-lime glass with sub-threshold flaws, Collected Papers, XIV Intl. Congr. On Glass.

    Google Scholar 

  26. Gy, R. and Guillemet, C. (1992) Characterization of a mode of rupture of glass at 610°C, in The Physics of Non-Crystalline Solids Ed. L.D. Pye, W.C. La Course, H.J. Stevens, Taylor & Francis.

    Google Scholar 

  27. Tomozawa, M. and Han, W.-T. (1991) Water entry into silica glass during slow crack growth, J. Am. Ceram. Soc. 74, N°10, 2573–2576.

    Article  CAS  Google Scholar 

  28. Guillemet, C. (1995) Fracture et plasticité des verres, La Revue de Métallurgie-CIT/Science et Génie des Matériaux. Février 1995.

    Google Scholar 

  29. Matthewson, M.J. and Kurkjian, C.R. (1988) Environmental effects of static fatigue of silica optical fiber, J. Am. Ceram. Soc. 71, N°3, 177–183.

    Article  CAS  Google Scholar 

  30. Kurkjian, C.R., Simpkins, P.G. and Inniss, D. (1993) Strength, degradation and coating of silica lightguides, J. Am. Ceram. Soc. 76, N°5, 1106–1112.

    Article  CAS  Google Scholar 

  31. Li, H., Agarwal, A. and Tomozawa, M. (1995) Effect of fictive temperature on dynamic fatigue behavior of silica and soda-lime glasses, J. Am. Ceram. Soc. 78, N°5, 1393–1396.

    Article  CAS  Google Scholar 

  32. Ito, S. Sehgal, J. and Deutschbein S. (2000) Fictive temperature and fracture behavior of glass, Glass in the new Millenium — ICG 2000, Amsterdam.

    Google Scholar 

  33. Barthel, E., Lin, X.Y. and Loubet, J.-L. (1996) Adhesion energy measurements in the presence of adsorbed liquid using a rigid surface force apparatus, J. of Colloid and Interface Sci. 177, 401–406.

    Article  CAS  Google Scholar 

  34. Keulen, N.M. (1993) Indentation creep of hydrated soda-lime silicate glass determined by nanoindentation, J. Am. Ceram. Soc. 76, N°4, 904–912.

    Article  CAS  Google Scholar 

  35. Keulen, N.M. and Dissel, M. (1993) Temperature dependence of indentation cracking in soda-lime silicate glass, Glass Technology Vol. 34, N°5, 200–205.

    CAS  Google Scholar 

  36. Banerjee, R., Särkar, B.K. (1997) Crack initiation by indentation fatigue in lead alkali and soda-lime glass, J. Am. Ceram. Soc. 80, N°10, 2722–2724.

    Article  CAS  Google Scholar 

  37. Kurkjian, C.R., Kammlott, G.W. (1995) Indentation behavior of soda-lime silica glass, fused silica and single-crystal quartz at liquid nitrogen temperature, J. Am. Ceram. Soc. 78, N°3, 737–744.

    Article  CAS  Google Scholar 

  38. Dill, S.J., Bennison, S.J. and Dauskardt, R.H. (1997) Sub-critical crack-growth behavior of borosilicate glass under cyclic loads: evidence of a mechanical fatigue effect, J. Am. Ceram. Soc. 80, N°3, 773–776.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gy, R. (2001). Stress Corrosion of Glass. In: Bouchaud, E., Jeulin, D., Prioul, C., Roux, S. (eds) Physical Aspects of Fracture. NATO Science Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0656-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0656-9_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7147-2

  • Online ISBN: 978-94-010-0656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics