Skip to main content

Cyclic Strain Localization in Fatigued Metals

  • Chapter
Physical Aspects of Fracture

Part of the book series: NATO Science Series ((NAII,volume 32))

Abstract

Strain localization in ductile metals subjected to cyclic deformation is a commonly observed feature which can be regarded as the first sign of fatigue damage. Cyclic strain localization can occur in different forms, e.g. in persistent slip band (PSBs), at notches at the free surface, at the tips of propagating cracks, at precipitate-free zones (PFZs), at grain boundaries or at pores at or just below the surface. In this paper, these forms of cyclic strain localization will be discussed with reference to their thresholds and the responsible microstructural mechanisms in terms of the slip modes in single- and multiphase mono- and polycrystals. In particular, the irreversible cyclic slip mechanisms responsible for the evolution of fatigue damage will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mughrabi, H. (1985) in Dislocations and Properties of Real Materials, Book No. 323, The Institute of Metals, London, p. 244.

    Google Scholar 

  2. Laird, C. (1983) in F.R.N. Nabarro (ed.), Dislocations in Solids, Vol. 6, North-Holland Publishing Company, p. 1.

    Google Scholar 

  3. Neumann, P. (1983) in R.W. Cahn and P. Haasen (1983), Physical Metallurgy, Chapter 24, Elsevier, p. 1554.

    Google Scholar 

  4. Brown, L.M. (2000) Special Issue in Honour of Prof. T. Mori, Mater. Sci. Eng. A, 285, 35.

    Article  Google Scholar 

  5. Laird, C. (1999) in J.B. Bilde-Sørensen et al. (eds.), Proc. of 20th RisØ International Symposium on Materials Science: Deformation-Induced Microstructures: Analysis and Relation to Properties, RisØ National Laboratory, Roskilde, Denmark, p. 85.

    Google Scholar 

  6. Basinski, Z.S. and Basinski S.J. (1992) Progress in Materials Science 36, 89.

    Article  CAS  Google Scholar 

  7. Lukáš, P. (1998) in K.T. Rie and P.D. Portella (eds.), Proc. of 3 rd Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier Science Ltd., p. 267.

    Google Scholar 

  8. Thompson, N., Wadsworth, N. and Louat, N. (1956) Phil. Mag 1, 113.

    Article  CAS  Google Scholar 

  9. Bretschneider, J. and Holste, C. (1998) in J.V. Carstensen et al. (eds.), Proc. of 19th Ris0 Int. Symp. on Materials Science: Modelling of Structure and Mechanics of Materials from Microscale to Product, RisØ National Laboratory, Roskilde, Denmark, p. 25.

    Google Scholar 

  10. Holzwarth, U. and Essmann, U. (1994) Appl Phys. A58, 197.

    CAS  Google Scholar 

  11. Mughrabi, H., Ackermann, F. and Herz, K. (1979) in J.T. Fong (ed.), Fatigue Mechanisms, ASTM STP 675, p. 69.

    Google Scholar 

  12. Mughrabi, H., Wang, R., Differt, K. and Essmann, U. (1983), in J. Lankford et al. (eds.), Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, p. 5.

    Google Scholar 

  13. Mughrabi, H. and Wang, R. (1981) in N. Hansen et al. (eds.), Proc. of 2nd RisØ Int. Symposium on Metallurgy and Materials Science: Deformation of Polycrystals, Mechanisms and Microstructures, RisØ National Laboratory, Roskilde, Denmark, p. 87.

    Google Scholar 

  14. Wilhelm, M. and Everwin, P. (1979) in P. Haasen et al. (eds.), Proc. of 5 th Int. Conf on the Strength of Metals and Alloys (ICSMA 5), Vol. 2, Pergamon Press, p. 1089.

    Google Scholar 

  15. Hong, S.I. and Laird, C. (1991) Fatigue Fract. Engng. Mater. Struct. 14, 143.

    Article  Google Scholar 

  16. Lukáš, P., Kunz, L. and Krejči, J. (1992) Mater. Sci. Eng. A, 158, 177.

    Article  Google Scholar 

  17. Lee, J.-K. and Laird, C. (1983) Phil. Mag. A, 47, 579.

    Article  CAS  Google Scholar 

  18. Wang, R. and Mughrabi, H. (1984) Mater. Sci. Eng. 63, 147.

    Article  CAS  Google Scholar 

  19. Schwab, A., Meissner, O. and Holste, C. (1998) Phil. Mag. Letters 77, 23.

    Article  CAS  Google Scholar 

  20. Hollmann, M., Bretschneider, J. and Holste, C. (2000) Cryst. Res. Technol. 35, 479.

    Article  CAS  Google Scholar 

  21. Wilson, D.V. and Tromans, J.K. (1970) Acto metall. 18, 1197.

    Article  CAS  Google Scholar 

  22. Pohl, K., Mayr, P. and Macherauch, E. (1980) Scripta metall 14, 1167.

    Article  Google Scholar 

  23. Calabrese, C. and Laird, C. (1974a) Mater. Sci. Eng. 13, 141.

    Article  CAS  Google Scholar 

  24. Calabrese, C. and Laird, C. (1974b) Mater. Sci. Eng. 13, 159.

    Article  CAS  Google Scholar 

  25. Wilhelm, M. (1981) Mater. Sci. Eng. 48, 91.

    Article  CAS  Google Scholar 

  26. Mughrabi, H. (1983) in J.B. Bilde-Sørensen et al. (eds.), Proc. of 4th RisØ Int. Symp. on Metallurgy and Materials Science: Deformation of Multi-Phase and Particle-Containing Materials, RisØ National Laboratory, Roskilde, Denmark, p. 65.

    Google Scholar 

  27. Stoltz, R.E. and Pineau, A.G. (1978) Mater. Sci. Eng. 34, 275.

    Article  CAS  Google Scholar 

  28. Clavel, M. and Pineau, A. (1982) Mater. Sci. Eng. 55, 157.

    Article  Google Scholar 

  29. Obrtlik, K., Lukas, P. and Polàk, J. (1998) in K.T. Rie and P.D. Portella (eds.), Proc. of 3 rd Int. Conf. on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier Science Ltd., p. 33.

    Google Scholar 

  30. Essmann, U., Goesele, U. and Mughrabi, H. (1981) Phil. Mag. A, 44, 405.

    Article  CAS  Google Scholar 

  31. Bayerlein, M. and Mughrabi, H. (1992) in K.J. Miller and E.R. de los Rios (eds.), Short Fatigue Cracks, ESIS 13, Mechanical Engineering Publications, London, p. 55.

    Google Scholar 

  32. Neumann, P. and Tönnessen, A. (1988) in P.O. Kettunen et al. (eds.), Proc. of 8 th Int. Conf. on the Strength of Metals and Alloys (ICSMA 8), Vol. 1, Pergamon Press, p. 743.

    Google Scholar 

  33. Lowe, T.C. and Valiev, R.Z., eds. (2000) Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers.

    Google Scholar 

  34. Vinogradov, A., Kaneko, Y., Kitagawa, K., Hashimoto, S. and Valiev R. (1998) Mater. Sci. Forum 269-272, 987.

    Article  CAS  Google Scholar 

  35. Eisenmeier, G., Ottmüller, M., Höppel, H.W. and Mughrabi H. (1999) in FATIGUE’ 99: Proc. of Seventh Int. Fatigue Congress, Vol. 1, Higher Education Press, Beijing, P.R. China, EMAS Ltd., West Midlands, UK, p. 253.

    Google Scholar 

  36. Borbély, A., Mughrabi, H., Eisenmeier, G. and Höppel, H.W. (2000). Publication in preparation, to be submitted to int. J. Fracture

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mughrabi, H. (2001). Cyclic Strain Localization in Fatigued Metals. In: Bouchaud, E., Jeulin, D., Prioul, C., Roux, S. (eds) Physical Aspects of Fracture. NATO Science Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0656-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0656-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7147-2

  • Online ISBN: 978-94-010-0656-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics