Intermediate Unification Scale and Neutralino-Nucleon Cross Section

  • D. G. Cerdeño
  • S. Khalil
  • C. Muñoz
Part of the NATO Science Series book series (NAII, volume 42)


We review the direct detection of supersymmetric dark matter in the light of recent experimental results. In particular, we show that in scenarios with intermediate unification scale, which appear naturally in some superstring constructions, the neutralino-nucleon cross section can be of order of 10-6 pb, i.e., where current dark matter detectors are sensitive.


Dark Matter Gauge Group Gauge Coupling Light Neutralino Soft Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bottino, F. Donato, N. Fornengo and S. Scopel, Phys. Rev. D59 (1999) 095004.ADSGoogle Scholar
  2. 2.
    E. Accomando, R. Arnowitt, B. Dutta and Y. Santoso, Nucl. Phys. B585 (2000) 124.ADSCrossRefGoogle Scholar
  3. 3.
    M.E. Gómez and J.D. Vergados, hep-ph/0012020.Google Scholar
  4. 4.
    A. Corsetti and P. Nath, hep-ph/0003186.Google Scholar
  5. 5.
    J.L. Feng, K.T. Matchev and F. Wilczek, Phys. Lett. B482 (2000) 388.ADSGoogle Scholar
  6. 6.
    E. Gabrielli, S. Khalil, C. Muñoz and E. Torrente-Lujan, Phys. Rev. D63 (2001) 025008.ADSGoogle Scholar
  7. 7.
    D. Bailin, G.V. Kraniotis and A. Love, Phys. Lett. B491 (2000) 161.MathSciNetADSGoogle Scholar
  8. 8.
    D.G. Cerdeño, E. Gabrielli, S. Khalil, C. Muñoz and E. Torrente-Lujan, hep-ph/0102270, to appear in Nucl. Phys. B.Google Scholar
  9. 9.
    J. Lykken, Phys. Rev. D54 (1996) 3693.MathSciNetADSGoogle Scholar
  10. 10.
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. Lett. B249 (1998) 262; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436 (1998) 263; I. Antoniadis and C. Bachas, Phys. Lett. B450 (1999) 83.Google Scholar
  11. 11.
    G. Shiu and S.-H.H. Tye, Phys. Rev. D58 (1998) 106007; Z. Kakushadze and S.-H.H. Tye, Phys. Rev. D58 (1998) 126001.MathSciNetADSGoogle Scholar
  12. 12.
    K. Benakli, Phys. Rev. D60 (1999) 104002.MathSciNetADSGoogle Scholar
  13. 13.
    C. Burgess, L.E. Ibañez and F. Quevedo, Phys. Lett. B447 (1999) 257.ADSGoogle Scholar
  14. 14.
    I. Antoniadis and B. Pioline, Nucl. Phys. B550 (1999) 41.MathSciNetADSGoogle Scholar
  15. 15.
    K. Benakli and Y. Oz, Phys. Lett. B472 (2000) 83; A. Gregori, hep-th/0005198.MathSciNetADSGoogle Scholar
  16. 16.
    L.E. Ibanez, C. Muñoz and S. Rigolin, Nucl. Phys. B553 (1999) 43.ADSCrossRefGoogle Scholar
  17. 17.
    L.E. Ibañez, hep-ph/9905349; I. Antoniadis, C. Bachas and E. Dudas, Nucl. Phys. B560 (1999) 93; N. Arkani-Hamed, S. Dimopoulos and J. March-Russell, hep-th/9908146.Google Scholar
  18. 18.
    For a review, see e.g.: A. Brignole, L.E. Ibanez and C. Muñoz, hep-ph/9707209, and references therein.Google Scholar
  19. 19.
    For a review, see e.g.: C. Muñoz, hep-th/9906152, and references therein.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • D. G. Cerdeño
    • 1
  • S. Khalil
    • 2
    • 3
  • C. Muñoz
    • 1
  1. 1.Departamento de Física Teórica C-XI and Instituto de Física Teórica C-XVIUniversidad Autónoma de MadridMadridSpain
  2. 2.Centre for Theoretical PhysicsUniversity of SussexBrightonUK
  3. 3.Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations