Status of Neutrino Physics

  • J. W. F. Valle
Part of the NATO Science Series book series (NAII, volume 42)


The solar (Suzuki:2000) and atmospheric (Sobel:2000; Becker-Szendy:1992) neutrino data provide the two milestones indicating physics beyond the Standard Model (SM). Of particular importance has been the confirmation in 1998 by the Super-Kamiokande (SK, for short) collaboration of the zenith-angle-dependent deficit of atmospheric neutrinos. Altogether the data provide a strong evidence for v e and V μ conversions, respectively. Neutrino conversions are a natural consequence of theories beyond the Standard Model (Valle: 1991). The first example is oscillations of low-mass neutrinos. While the theoretical understanding of the origin of neutrino masses is still lacking, there is a variety of attractive options available. Most likely, the exceptional nature of neutrinos as the only electrically neutral fermions in the SM underlies the smallness of their mass, as it would be associated with the violation of lepton number. Indeed in gauge theories one expects, on fundamental grounds, neutrinos to be Majorana fermions (Schechter:1980a). This is the generic situation in actual models. It will be surprising indeed if massive neutrinos turn out to be Dirac particles, like the quarks. Lepton number violation would imply processes such as neutrinoless double beta decay (Schechter: 1982), novel CP violation effects (Schechter: 1980a; Schechter.1981a), and/or neutrino electromagnetic properties (Schechter: 1981b), so far unobserved. Present data are compatible with either hierarchical or quasi-degenerate neutrino masses. While solar neutrino rates favour the small mixing angle MSW oscillations (Wolfenstein: 1978; Smirnov:1986), present data on the recoil-electron spectrum prefer the large mixing solutions. When interpreted in terms of neutrino oscillations, the observed atmospheric neutrino zenith-angle-dependent deficit strongly suggests the existence of to oscillations with maximal mixing (Gonzalez-Garcia:2001). Adding information from reactor experiments one concludes that the third angle amongst the three neutrinos is small (Apollonio:1999). Thus, altogether, we have the intriguing possibility that, unlike the case of quarks, neutrino mixing is bi-maximal (Barger:1998; Davidson: 1998; deGouvea:2000; Chankowski:2000fp; Mira:2000gg) which could be tested at the upcoming long-baseline experiments or at a neutrino factory experiment (Quigg:1999) or at the proposed KamLAND experiment (DeBraeckeleer:2000).


Chlorine Peris Stein Calorimeter Gallium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhmedov, E: Phys. Lett. B213 64–68; C. S. Lim and W. Marciano, Phys. Rev. D37 1368Google Scholar
  2. Altarelli, G. and Feruglio, F. Phys. Lett. B451 (1999) 388; S. Lola and G.G. Ross, hepph /9902283; R. Barbieri, L.J. Hall and A. Strumia, Phys. Lett. B445, 407 (1999); M.E. Gomez, G.K. Leontaris, S. Lola and J.D. Vergados, Phys. Rev. D59, 116009 (1999); G.K. Leontaris, S. Lola, C. Scheich and J.D. Vergados, Phys. Rev. D53, 6381 (1996); C. H. Albright, K. S. Babu and S. M. Barr, Phys. Rev. Lett. 81 (1998) 1167; K. R. Balaji, R. N. Mohapatra, M. K. Parida and E. A. Paschos, Phys. Rev. D 63, 113002 (2001)ADSGoogle Scholar
  3. Apollonio, M. et al., Phys.Lett. B466 (1999) 415; F. Boehm et al, hep-ex/9912050ADSGoogle Scholar
  4. Arpesella, C. at al., Proposal of the Borexino experiment (1991).Google Scholar
  5. Athanassopoulos, C. et al [LSND Collaboration], Phys. Rev. Lett. 75(95) 2650; Phys. Rev. Lett. 77 (96) 3082; C. Athanassopoulos et al, Phys. Rev. Lett. 81, 1774 (1998)Google Scholar
  6. Bahcall, J.N. et al, jnb/Google Scholar
  7. Bahcall, J. N., Phys. Lett. B338 (1994) 276; V. Castellani, et al Phys. Lett. B324 (1994) 245; N. Hata, S. Bludman, and P. Langacker, Phys. Rev D 49 (1994)3622; V. Berezinsky, Comm. on Nucl. and Part. Phys. 21 (1994) 249Google Scholar
  8. Bahcall, J., Basu, S. and Pinsonneault, M. Astrophys. J. 529, 1084 (2000).Google Scholar
  9. Balantekin, A.B et al Phys. Rev. D54 (1996) 3941; F. N. Loreti and A. B. Balantekin, Phys. Rev. D50 (1994) 4762; F. N. Loreti et al, Phys. Rev. D52 (1996) 6664.ADSGoogle Scholar
  10. Bamert, P., Burgess, C. and Michaud, D. Nucl. Phys. B513, 319 (1998); C.P. Burgess, hep-ph/9711425; C.P. Burgess and D. Michaud, Annals Phys. 256, 1 (1997) and hep-ph/9611368.ADSCrossRefGoogle Scholar
  11. Barger, V., Whisnant, K., Phillips, R. J. N. Phys. Rev. D22, 1636 (1980); G.L. Fogli, E. Lisi, D. Montanino, Phys. Rev. D49, 3626 (1994); Astropart. Phys. 4, 177 (1995); R. Barbieri, L. J. Hall, D. Smith, A. Strumia, N. Weiner, JHEP 9812, 017 (1998); T. Teshima, T. Sakai, O. Inagaki, Int. J. Mod. Phys. A14, 1953 (1999); V. Barger, K. Whisnant, Phys. Rev. D59, 093007 (1999).ADSGoogle Scholar
  12. Barger, V., Whisnant, K. and Phillips, R. J. Phys. Rev. D24, 538 (1981); S.L. Glashow and L.M. Krauss, Phys. Lett. 190B, 199 (1987); S.L. Glashow, P.J. Kernan and L.M. Krauss, Phys. Lett. B445, 412 (1999)ADSGoogle Scholar
  13. Barger, V. et al Phys. Lett. B437, 107 (1998); E. Torrente-Lujan, Phys. Lett. B389 (1996) 557ADSGoogle Scholar
  14. Becker-Szendy, R. et al. (1992), Phys. Rev. D46, 3720 (1992). H.S. Hirata et al, Phys. Lett. B280, 146 (1992); Y. Fukuda et al, ibid B335, 237 (1994); W.W.M. Allison et al., Phys. Lett. B449, 137 (1999); A. Mann,; F. Ronga, hep-ex/0001058 and; K. Daum et al. Z. Phys. C66, 417 (1995); M. Aglietta et al., Europhys. Lett. 8, 611 (1989).ADSGoogle Scholar
  15. Bilenky, S. Giunti, C. and Grimus, W. Prog. Part. Nucl. Phys. 43 (1999) 100CrossRefGoogle Scholar
  16. Caldwell, D. O. and Mohapatra, R. N. Phys. Rev. D48 (1993) 329Google Scholar
  17. Casas, J. A. et al, Nucl. Phys. B 569 (2000) 82 J. Ellis and S. Lola, Phys. Lett. B 458 (1999) 310 N. Haba, Y. Matsui, N. Okamura and M. Sugiura, Prog. Theor. Phys. 103 (2000) 145ADSCrossRefGoogle Scholar
  18. Chankowski, P. et al, Phys. Rev. Lett. 86, (2001) 3488 [hep-ph/0011150].ADSCrossRefGoogle Scholar
  19. Davidson, S. and King, S. Phys. Lett. B445, 191 (1998); S. F. King, Nucl. Phys. B576 (2000) 85ADSGoogle Scholar
  20. De Braeckeleer, L. Nucl. Phys. Proc. Suppl. 87, 312 (2000).ADSCrossRefGoogle Scholar
  21. de Gouvea, A., Friedland, H. Murayama, Phys. Rev. D60, 093011 (1999).ADSGoogle Scholar
  22. de Gouvea A. and J. W. F. Valle, Phys. Lett. B 501 (2001) 115 [hep-ph/0010299].ADSCrossRefGoogle Scholar
  23. de Holanda, P. C. et al (1999) Phys. Rev. D60 (1999) 093010, hep-ph/9903473; G. L. Fogli, E. Lisi, D. Montanino and A. Palazzo, Phys. Rev. D61 (2000) 073009; see also J.N. Bahcall, P.I. Krastev and A.Y. Smirnov, hep-ph/9905220.ADSGoogle Scholar
  24. Dziewonski, A. & Anderson, D. Phys. Earth Planet. Inter. 25, 297 (1981).ADSCrossRefGoogle Scholar
  25. Giunti, C, Gonzalez-Garcia, M. and Peña-Garay, C. (2000) Phys. Rev. D62, 013005 (2000); Yasuda, O. hep-ph/0006319; S. M. Bilenky, C. Giunti, W. Grimus and T. Schwetz, Phys. Rev. D 60 (1999) 073007ADSGoogle Scholar
  26. Fogli, G. L. et al (1999) Phys. Rev. D59, 033001 (1999); A. De Rujula, M.B. Gavela, P. Hernandez, hep-ph/0001124; T. Teshima, T. Sakai, Prog. Theor. Phys. 101, 147 (1999); Prog. Theor. Phys. 102, 629 (1999); hep-ph/0003038ADSGoogle Scholar
  27. Fogli, G. L. et al (2000) Phys. Rev. D62, 013002 (2000); Phys. Rev. D54, 2048 (1996); A.M. Gago, H. Nunokawa, R. Zukanovich Funchal, hep-ph/0007270.ADSGoogle Scholar
  28. Foot, R. Volkas, R. and Yasuda, O. Phys. Rev. D58, 013006 (1998); O. Yasuda, Phys. Rev. D58, 091301 (1998); G.L. Fogli, E.Kh. Akhmedov, A. Dighe, P. Lipari and A.Yu. Smirnov, hep-ph/9808270.ADSGoogle Scholar
  29. Fornengo, N, Gonzalez-Garciaî M. and Valle, J. W. F. Nucl. Phys. B580 (2000) 58; M.C. Gonzalez-Garcia, H. Nunokawa, O.L. Peres and J. W. F. Valle, Nucl. Phys. B543, 3 (1999) and M. C. Gonzalez-Garcia, H. Nunokawa, O. L. Peres, T. Stanev and J. W. F. Valle, Phys. Rev. D58 (1998) 033004.ADSCrossRefGoogle Scholar
  30. Gaisser, T. Halzen, F. and Stanev, T., Phys. Rep. 258, 174 (1995)ADSCrossRefGoogle Scholar
  31. Gaisser, T. and Stanev, T. Phys. Rev. D57 1977 (1998); G.Barr, T.K.Gaisser and T. Stanev, Phys. Rev. D 39 (1989) 3532 and Phys. Rev. D38, 85; V. Agrawal et al. Phys. Rev. D53, 1314 (1996); L. V. Volkova, Sov. J. Nucl. Phys. 31, 784 (1980); M. Honda, T. Kajita, S. Midorikawa and K. Kasahara, Phys. Rev. D52, 4985 (1995).ADSGoogle Scholar
  32. Gonzalez-Garcia, M. C. et al, Nucl. Phys. B573, 3 (2000).ADSCrossRefGoogle Scholar
  33. Gonzalez-Garcia, M. C. and Pena-Garay, C. Phys. Rev. D62 (2000) 031301; A. de Gouvea, A. Friedland and H. Murayama, Phys. Lett. B490 (2000) 125; G. L. Fogli, E. Lisi and D. Montanino, Phys. Rev. D54, 2048 (1996)ADSGoogle Scholar
  34. Gonzalez-Garcia, M. and Peña-Garay, hep-ph/0011245Google Scholar
  35. Gonzalez-Garcia, M. C., et al Phys. Rev. D 63 (2001) 033005 [hep-ph/0009350]ADSCrossRefGoogle Scholar
  36. Hannestad, S. and Raffelt, G. Phys. Rev. D59, 043001 (1999)ADSGoogle Scholar
  37. Hirsch, M. and Valle, J. W. F. Phys. Lett. B 495 (2000) 121 [hep-ph/0009066].ADSCrossRefGoogle Scholar
  38. Hirsch, M. et al, Phys. Rev. D 62 (2000) 113008 [hep-ph/0004115]; J. C. Romão, M. A. Diaz, M. Hirsch, W. Porod and J. W. F. Valle, Phys. Rev. D61, 071703 (2000) [hep-ph/9907499]ADSCrossRefGoogle Scholar
  39. Ioannissyan, A. and J. W. F. Valle, Phys. Lett. B 332 (1994) 93; B. Bamert, C.P. Burgess, Phys. Lett. B 329 (1994) 289; D. Caldwell and R. N. Mohapatra, Phys. Rev. D 50 (1994) 3477; D. G. Lee and R. N. Mohapatra, Phys. Lett. B 329 (1994) 463; A. S. Joshipura, Z. Phys. C 64, 31 (1994).ADSCrossRefGoogle Scholar
  40. Ioannisian, A. and J. W. F. Valle, Phys. Rev. D 63 (2001) 073002 [hep-ph/9911349]ADSCrossRefGoogle Scholar
  41. Kachelriess, M. R. Tomas and J. W. F. Valle, JHEP 0101, 030 (2001) [hep-ph/0012134].ADSCrossRefGoogle Scholar
  42. Liu, Q. Y. and Smirnov, A. Nucl. Phys. B524 505–523; V. Barger, K. Whisnant and T. Weiler, Phys.Lett. B427 (1998) 97; S. Gibbons, R. N. Mohapatra, S. Nandi and A. Raichoudhuri, Phys. Lett. B430 (1998) 296; Nucl.Phys. B524 (1998) 505; S. Bilenky, C. Giunti and W. Grimus, Eur. Phys. J. C 1, 247 (1998); S. Goswami, Phys. Rev. D 55, 2931 (1997); N. Okada and O. Yasuda, Int. J. Mod. Phys. A12 (1997) 3669; E. J. Chun, A. Joshipura and A. Smirnov, in Elementary Particle Physics: Present and Future (World Scientific, 1996), ISBN 981-02-2554-7; P. Langacker, Phys. Rev. D58, 093017 (1998); M. Bando and K. Yoshioka, Prog. Theor. Phys. 100, 1239 (1998)Google Scholar
  43. Lola, S. and Vergados, J. Prog. Part. Nucl. Phys. 40, 71 (1998); G. Altarelli and F. Feruglio, Phys. Lett. B439, 112 (1998).ADSCrossRefGoogle Scholar
  44. Masiero, A. and J. W. F. Valle, Phys. Lett. B 251 (1990) 273.ADSCrossRefGoogle Scholar
  45. Mira, J., E. Nardi, D. A. Restrepo and J. W. F. Valle, Phys. Lett. B 492 (2000) 81 [hep-ph/0007266].ADSCrossRefGoogle Scholar
  46. Miranda, O. et al Nucl. Phys. B 595 (2001) 360. See also J. Pulido and E. Akhmedov, Phys. Lett. B485 (2000) 178; M. M. Guzzo and H. Nunokawa, Astropart. Phys. 12 (1999) 8; J. Derkaoui and Y. Tayalati, Astropart. Phys. 14 (2001) 351.ADSCrossRefGoogle Scholar
  47. Nunokawa, H. et al Nucl. Phys. B472 495 [see also hep-ph/9610526]Google Scholar
  48. Peltoniemi, J. T., Tommasini, D. and Valle, J. W. F. Phys. Lett. B298 (1993) 383ADSGoogle Scholar
  49. Peltoniemi, J. T. and Valle, J. W. F. Nucí. Phys. B406 (1993) 409 [hep-ph/9302316]ADSCrossRefGoogle Scholar
  50. Porod, W. et al “Testing neutrino mixing at future collider experiments,” Phys. Rev. D 63 (2001) 115004 [hep-ph/0011248]ADSCrossRefGoogle Scholar
  51. Quigg, C. Introduction to NuFact’ 99, the ICFA/ECFA Workshop on Neutrino Factories Based on Muon Storage Rings, hep-ph/9908357.Google Scholar
  52. Schechter, J. and Valle, J. W. F. Phys. Rev. D22, 2227 (1980).ADSGoogle Scholar
  53. Schechter, J. and Valle, J. W. F. J. Schechter and J. W. F. Valle, Phys. Rev. D21 309 (1980)ADSGoogle Scholar
  54. Schechter, J. and Valle, J. W. F. Phys. Rev. D25, 2951 (1982); for a experimental review see A. Morales, hep-ph/9809540ADSGoogle Scholar
  55. Schechter, J. and Valle, J. W. F. Phys. Rev. D23 (1981) 1666 showed that Majorana phases are physical, though their effects are small due to the smallness of neutrino masses.ADSGoogle Scholar
  56. Schechter, J. and Valle, J. W. F. Phys. Rev. D24 1883, (1981), Err. ibid. D25 283, (1982).ADSGoogle Scholar
  57. Smirnov A. and Mikheev, S. P. Neutrino Oscillations In Matter With Varying Density, In Proceedings, *Tignes 1986, massive neutrinos* 355 Google Scholar
  58. Smirnov, A. Y., D. N. Spergel and J. N. Bahcall, Phys. Rev. D 49 (1994) 1389; B. Jegerlehner, F.-Neubig and G. Raffelt, Phys. Rev. D 54 (1996) 1194ADSCrossRefGoogle Scholar
  59. Smith, D. Proc. of the Third Dark Matter Conference DARK2000, Heidelberg, July 10-16, 2000; W. Louis, W.C. Louis [LSND Collaboration], Prog. Part. Nucl. Phys. 40, 151 (1998).Google Scholar
  60. Sobel, H. Y. Fukuda et al., Phys. Rev. Lett. 82 (1999) 2644 [hep-ex/9812014]; Phys. Lett. B433, 9 (1998); Phys. Lett. B436, 33 (1998); T. Toshito, ADSCrossRefGoogle Scholar
  61. Suzuki, Y. Talk at XIX Int. Conference on Neutrino Physics and Astrophysics, Sudbury, Canada,}; T. Takeuchi, talk at the XXXth International Conference on High Energy Physics, ICHEP 2000 http://www.; Homestake Collaboration, B.T. Cleveland et al., Astrophys. J. 496, 505 (1998); R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994); K. Lande,; SAGE Collaboration, J.N. Abdurashitov et al., Phys. Rev. C60, 055801 (1999); V. Gavrin, GALLEX Collaboration, W. Hampel et al., Phys. Lett. B447, 127 (1999). E. Belloti,
  62. Valle, J. W. F. Gauge Theories and the Physics of Neutrino Mass, Prog. Part. Nucl. Phys. 26 (1991) 91CrossRefGoogle Scholar
  63. Wolfenstein, L. Phys. Rev. D 17 (1978) 236CrossRefGoogle Scholar
  64. Wolfenstein, L. Phys. Lett. B107 (1981) 77ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • J. W. F. Valle
    • 1
  1. 1.Instituto de Fisica Corpuscular — CSIC/U. de València, Astroparticle and High Energy Physics GroupEdificio de Institutos de PaternaValenciaSpain

Personalised recommendations