Variability of Shear Wave Speed and Attenuation In Surficial Marine Sediments

  • Michael D. Richardson


Values of shear wave speed and attenuation in surficial marine sediments (upper 30 cm) are summarized and then correlated with easily measured sediment physical properties (porosity, bulk density, and mean grain size). Shear wave speed ranges from a low of 5 m/s in soft silty-clays to a high of 150 m/s in hard pack fine sands. Shear wave speed increases with decreasing porosity, increasing bulk density, and increasing mean grain size. Strong gradients in shear wave speed in the upper meter of sediment, related to increased effective stress (overburden pressure) and vertical gradients in sediment properties complicate theses predictive relationships. Shear wave attenuation follows the opposite trends as shear wave speed, increasing with increasing porosity, decreasing mean grain size and decreasing bulk density.


Shear Wave Bulk Density Carbonate Sediment Shear Wave Speed Increase Bulk Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barbagelata, M.D. Richardson, B. Miaschi, E. Muzi, P. Guerrini, L. Troiano and T. Akal, ISSAMS: An in situ sediment geoacoustic measurement system. In Shear Waves in Marine Sediments, edited by J.M. Hovem, M.D. Richardson and R.D. Stoll (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991) pp. 305–312.CrossRefGoogle Scholar
  2. 2.
    S.F. Griffin, F.B. Grosz and M.D. Richardson, ISSAMS: A remote in situ sediment acoustic measurement system, Sea Technology 37, 19–22 (1996).Google Scholar
  3. 3.
    M.D. Richardson, E. Muzi, B. Miaschi and F. Turgutcan, Shear wave gradients in near-surface marine sediment. In Shear Waves in Marine Sediments, edited by J.M. Hovem, M.D. Richardson and R.D. Stoll (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991) pp. 295–304.CrossRefGoogle Scholar
  4. 4.
    M.D. Richardson, K.B. Briggs, S.J. Bentley, D.J. Walter, T.H. Orsi, Biological and hydrodynamic effects on physical and acoustic properties of surficial sediments off the Eel River, Northern California, Marine Geology 182 (Dec. 2001).Google Scholar
  5. 5.
    M.D. Richardson, Attenuation of shear waves in near-surface sediments. In High-Frequency Acoustics in Shallow Water, edited by N.G. Pace, E. Pouliquen, O. Bergem and A.P. Lyons. SACLANTCEN Conference Proceedings CP-45, La Spezia, Italy (1997) pp. 451–457.Google Scholar
  6. 6.
    M.D. Richardson, D.M. Lavoie and K.B. Briggs, Geoacoustic and physical properties of carbonate sediments of the Lower Florida Keys, Geo-Marine Letters 17, 316–324 (1997).CrossRefGoogle Scholar
  7. 7.
    M.D. Richardson and K.B. Briggs, In-situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering, Geo-Marine Letters 16, 196–203 (1996).CrossRefGoogle Scholar
  8. 8.
    M.D. Richardson, In-situ, shallow-water sediments geoacoustic properties. In Shallow-Water Acoustics, edited by R. Zang and J. Zhou (China Ocean Press, Beijing, 1997) pp. 163–170.Google Scholar
  9. 9.
    M.J. Buckingham and M.D. Richardson, On tone-burst measurements of sound speed and attenuation in sandy marine sediments, IEEE J. Oceanic Eng. (in press 2002).Google Scholar
  10. 10.
    R.F.L. Self, P. A’Hearn, P.A. Jumars, D.R. Jackson, M.D. Richardson and K.B. Briggs, Effects of macrofauna on acoustic backscatter from the seabed: Field manipulations in West Sound, Orcas Island, WA, USA, J. Marine Res. 59, 991–1020 (2001).CrossRefGoogle Scholar
  11. 11.
    M.D. Richardson, K.B. Briggs, D.L. Bibee, P.A. Jumars, W.B. Sawyer, D.B. Albert, R.H. Bennett, T.K. Berger, M.J. Buckingham, N.P. Chotiros, P.H. Dahl, N.T. Dewitt, P. Fleischer, R. Flood, C.F. Greenlaw, D.V. Holliday, M.H. Hulbert, M.P. Hutnak, P.D. Jackson, J.S. Jaffe, H.P. Johnson, D.L. Lavoie, A.P. Lyons, C.S. Martens, D.E. McGehee, K.D. Moore, T.H. Orsi, J.N. Piper, R.I. Ray, A.H. Reed, R.F.L. Self, J.L Schmidt, S.G. Schock, F. Simonet, R.D. Stoll, D.J. Tang, D.E. Thistle, E.I. Thorsos, D.J. Walter and R.A. Wheatcroft, An overview of SAX99: Environmental considerations. IEEE J. Oceanic Eng. 26, 26–53 (2001).CrossRefGoogle Scholar
  12. 12.
    R.H. Wilkens and M.D. Richardson, The influence of gas bubbles on sediment acoustic properties: In situ, laboratory and theoretical results from Eckernförde Bay, Baltic Sea, Germany, Cont. Shelf Res. 18, 1859–1892 (1998).CrossRefGoogle Scholar
  13. 13.
    M.D. Richardson, E. Muzi, L. Troiano and B. Miaschi, Sediment shear waves: A comparison of in situ and laboratory measurements. In Microstructure of Fine Grained Sediments, edited by R.H. Bennett, W.R. Bryant and M.H. Hurlbert (Springer-Verlag, New York, 1990) Chap. 44, pp. 403–415.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Michael D. Richardson
    • 1
  1. 1.Marine Geosciences DivisionNaval Research Laboratory, SSCUSA

Personalised recommendations