Skip to main content

Perpendicular Recording Media for Ultra-High-Density Magnetic Recording

  • Chapter
Magnetic Storage Systems Beyond 2000

Part of the book series: NATO Science Series ((NAII,volume 41))

Abstract

The features of perpendicular recording media are described, focussing on the application to ultra-high-density magnetic recording. A perpendicular recording medium that employs a thick recording layer with moderate coercivity can reduce some of the difficulties that arise with a conventional longitudinal thin film medium. Recent experimental studies of perpendicular media are briefly reviewed and the future possibilities of perpendicular media are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charap S.H., Lu P-L, and He Y. (1997) Thermal stability of recorded information at high densities, IEEE Trans. Magn. Vol.33, no.2, pp.978–983.

    Article  Google Scholar 

  2. Weiler D., and Moser A. (1999) Thermal Effect Limits in Ultrahigh-Density Magnetic Recording, IEEE Trans. Magn. Vol.35, no.6, pp.4423–4439.

    Article  Google Scholar 

  3. Iwasaki S. (1980) Perpendicular magnetic recording, IEEE Trans. Magn. Vol.MAG-16, pp.71–76.

    Article  CAS  Google Scholar 

  4. Futamoto M., Hirayama Y., Honda Y., Ito K., and Yoshida K. (1997) Investigation of high density magnetic recording with single-layer perpendicular media, J. Magn. Soc. Japan., Vol.21, Suppl. No.S2, pp.141–149.

    Google Scholar 

  5. Futamoto M., Inaba N., Hirayama Y., Ito K., and Honda Y. (1999) Microstructure and micromagnetics of future thin film media, J. Magn. Magn Mater. Vol. 193, pp.36–43.

    Article  CAS  Google Scholar 

  6. Ouchi K. and Honda N. (2000) Overview of latest work on perpendicular media, IEEE Trans. Magn. Vol,36, no. 1, pp. 16–22.

    Article  CAS  Google Scholar 

  7. Hosoe Y., Kanbe T., Tanahashi K., Tamai I., Matsunuma S., and Takahashi Y. (1998) Thermal aftereffects in thin film magnetic recording media, IEEE Trans. Magn. Vol.34, pp. 1528–1533.

    Article  CAS  Google Scholar 

  8. Uesaka Y., Takahashi Y., Nakatani Y., Hayashi N., and Fukushima H. (1997) Monte Carlo simulation of thermal fluctuation in magnetization of longitudinal and perpendicular magnetic recording media, J. Magn. Magn. Mater. Vol.174, pp.203–218.

    Article  CAS  Google Scholar 

  9. Takano H., Nishida Y., Futamoto M., Aoi H., and Nakamura Y. (2000) Possibilities of 40 Gb/in p2 perpendicular recording, Abstract of Intermag 2000, Paper AD-06.

    Google Scholar 

  10. Nakamoto K., Kawato Y., Komuro M., Hamakawa Y., and Kawabe T. (2000) Read-write performance of GMR heads with lead overlaid structure, Abstract of Intermag 2000, Paper FA-05.

    Google Scholar 

  11. Doener M.F., Bian X., Tang K., Toney M.F., Rubin K., Weiler D., Moser A., Mirzumaani M., Dolcyn A., Minvielle T., Takano K., and White R. (2000) Advanced media on glass substrate for 30 Gbitslin p2 and beyond, Abstract of Intermag 2000, Paper GA-01.

    Google Scholar 

  12. Liu F.H., Stoeu K., Shi X., Tong H.C., Quin C, Dong Z.W., Yan X., Gibbons M.G., Funada S., Liu Y., Prabhu P., Barr R., Dey S., Schultz M., Halhotra S., Lai B., Kimmal J., Russak M., Kern P., Wachenshwanz D., and Mei L. (2000) Demonstration of greater than 25 gigabits per square inch recording systems, Abstract of Intermag 2000, Paper HT-02.

    Google Scholar 

  13. Abarra E.N., Suzuki M., and Okamoto I. (2000) Thermal stability of longitudinal media for ›20Gbitlin p2 recording, Abstract of Intermag 2000, Paper AA-01.

    Google Scholar 

  14. Hirayama Y., Ito K., Honda Y., Inaba N., and Futamoto M. (1999) Thermal stability of CoCr-alloy perpendicular magnetic recording media, J. Magn. Magn. Mater. Vol. 193, pp.253–259.

    Article  CAS  Google Scholar 

  15. Inaba N. and Futamoto M. (2000) Compositional and temperature dependence of basic magnetic

    Google Scholar 

  16. Futamoto M., Inaba N., Hirayama Y. Ito K., and Honda Y. (1998) Compositional microstructure and micromagnetics of Co-based thin film media, Mat. Res. Soc. Symp., Proc. Vol. 517, pp.243–254.

    Article  CAS  Google Scholar 

  17. Inaba N., Yamamoto T., Hosoe Y., and Futamoto M. (1997) Microstructural segregation in CoCrTa and CoCrPt longitudinal magnetic recording media, J. Magn. Magn. Matter. Vol. 168, pp.222–231.

    Article  CAS  Google Scholar 

  18. Hirayama Y., Futamoto M., Ito K., Honda Y., and Maruyama Y. (1997) Investigation of high resolution and low noise single-layer perpendicular recording media for high density recording, IEEE Trans. Magn. Vol.33, no.l,pp.996–1001.

    Article  CAS  Google Scholar 

  19. Honda N., Yanasa S., Ouchi K., and Iwasaki S. (1999) Study on recording beyond 10 Gblin p2with CoCr based perpendicular recording media. Tech. Rep. IEICE, Vol. MR-98-6-20.

    Google Scholar 

  20. Oikawa S., Takeo A., Hikosaka T., and Tanaka Y. (2000) High performance CoPtCrO single layered perpendicular media, Abstract of lntermag 2000, Paper DP-05.

    Google Scholar 

  21. Suzuki T., Honda N., and Ouchi K. (1997) Preparation and magnetic properties of sputter-deposited Fe-Pt thin films with perpendicular anisotropy, J. Magn. Soc. Japan., Vol. 21-S2, pp. 177–180.

    Google Scholar 

  22. Ohmori H., and Maekawa A. (2000) Low noise CojPd multilayer perpendicular media with granular seedlayer. Abstract of lntermag 2000, Paper DO-02.

    Google Scholar 

  23. Matsumoto K., Chekanov A., Ozaki K., Tagawa I., and Shono K. (2000) Magnetic recording properties of magneto-optical media by merge type GMR head, Abstract of lntermag 2000, Paper HA-04.

    Google Scholar 

  24. Ando T., and Nishikawa T. (1997) Triple-layer perpendicular recording media for high S/N ratio and signal stability, IEEE Trans. Magn. Vol. 33, pp.2983–2985.

    Article  CAS  Google Scholar 

  25. Yanase S., Honda N., Ariake J., and Ouchi K. (1999) High density magnetic recording using perpendicular recording media with a thin back layer, Tech. Rep. IEICE, MR-98-6-20.

    Google Scholar 

  26. Honda Y., Kikukawa A., Hirayama Y., and Futamoto M. (2000) Effect of soft magnetic underlayer on magnetization microstructure of perpendicular thin film media, Abstract of lntermag 2000, Paper DP-07.

    Google Scholar 

  27. Kikukawa A., Honda Y., Hirayama Y., and Futamoto M. (2000) Noise characteristics of double layered perpendicular media using novel soft magnetic underlayer materials. Abstract of Intermag 2000, Paper DP-08.

    Google Scholar 

  28. Lairson B., Ho K., and Sun S. (1996) PRML recording performance of multilayer Pt/Co alloy media, J. Appl. Phys. Lett. Vol. 69, pp.124–126.

    Article  Google Scholar 

  29. Peng W., Keitel O., Victora R.H., Koparal E., and Judy J.H. (2000) Co/Pt superlattice with Ta seed layer on NiFe underlayer for double-layer perpendicular magnetic recording, Abstract of Intermag 2000, Paper DP-04.

    Google Scholar 

  30. Suzuki T., Kiya T., Honda N., and Ouchi K. (2000) High density recording on ultra-thin Fe-Pt films of perpendicular composite media. Abstract of Intermag 2000, Paper DP-14.

    Google Scholar 

  31. Hirayama Y., Honda Y., Takeuchi T., and Futamoto M. (1999) Recording characteristics of single-layer perpendicular media using ring-shaped heads, IEEE Trans. Magn. Vol.35, no.5, pp.2766–2768.

    Article  CAS  Google Scholar 

  32. Hirayama Y., Ito K., Honda Y., and Futamoto M. (1997) Magnetization decay in CoCr-alloy perpendicular magnetic recording media, J. Mag. Soc. Japan., Vol. 21, Suppl. No.S2, pp.297–300.

    Google Scholar 

  33. Yamamoto S., Andou T., Nakamura N., Nakamura T., Kurisu H., Matsuura M., Doi T., and Tamari K. (1997) Co-γFe 2O3/NiO perpendicular magnetic recording media, J. Mag. Soc. Japan., Vol.21, Suppl. NO.S2, pp.51–56.

    Google Scholar 

  34. Feng J., Matsushita N., Watanabe K., Nakagawa S., and Naaoe M. (1999) Al substituted Ba ferrite films with high coercivity and excellent squareness for low noise perpendicular recording layer, J. Appl. Phys. Vol.85, pp.6139–6141.

    Article  CAS  Google Scholar 

  35. Khizroev S., Kryder M., Ikeda Y., Rubin K., Arnett P., Best M, and Thompson D. (1999) Recording heads with track width suitable for 100 Gbits/in p2 density, IEEE Trans. Magn. Vol.35, no.3, pp.2544–2546.

    Article  Google Scholar 

  36. Honda N., Ariake J., Yamakawa K., Ouchi K., and Iwasaki S. (2000) Low noise perpendicular recording media for deep submicron track width recording, Abstract of Intermag 2000, Paper DP-13.

    Google Scholar 

  37. Cain W., Payne A., Baldwinson M., and Hempstead R. (1996) Challenges in the practical implementation of perpendicular magnetic recording, IEEE Trans. Magn. Vol.32, pp.97–102.

    Article  CAS  Google Scholar 

  38. Oshiki M. (1997) Approach for HDD with perpendicular magnetic recording, J. Mag. Soc. Japan., Vol.21, Suppl. No.Sl,pp.91–97.

    Google Scholar 

  39. Ise K., Yamakawa K., Ouchi K. Muraoka H., and Nakamura Y. (2000) High writing sensitivity single-pole head with a cusp field coil, Abstract of lntermag 2000, Paper CB-08.

    Google Scholar 

  40. Jiang W.H., Muraoka H., Sugita Y., and Nakamura Y. (1998) Influence of a single-pole head on output-time-decay in perpendicular double-layer media, J. Mag. Soc. Japan., Vol.22, pp.277–280.

    Article  CAS  Google Scholar 

  41. Wood R. (2000) The feasibility of magnetic recording at 1 terabit per square inch, IEEE Trans. Magn. Vol.36, no.l,pp.36–42.

    Article  Google Scholar 

  42. Kryder M. (1993) Review of nonconventional recording: approach to 100 Gbits/in p2, Abstract of The Magnetic Recording Conference

    Google Scholar 

  43. Katayama H., Hamamoto M., Sato J., Murakami Y., and Kojima K. (2000) New development in laser-assisted magnetic recording, IEEE Trans. Magn. Vol.36, no.l,pp. 195–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Futamoto, M., Hirayama, Y., Honda, Y., Kikukawa, A. (2001). Perpendicular Recording Media for Ultra-High-Density Magnetic Recording. In: Hadjipanayis, G.C. (eds) Magnetic Storage Systems Beyond 2000. NATO Science Series, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0624-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0624-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0118-5

  • Online ISBN: 978-94-010-0624-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics