Advertisement

Exchange-Biased Magnetic Tunnel Junctions Prepared By In-situ Natural Oxidation

  • H. Boeve
  • J. De Boeck
  • G. Borghs
Part of the NATO Science Series book series (NAII, volume 41)

Abstract

Magnetic tunnel junctions, showing spin-dependent tunneling, are considered for future implementation in high density magnetic memories. A low device resistance is a key criterium for the implementation. In this paper, we discuss the transport properties of low-resistance tunnel barriers realized by in-situ natural oxidation of thin Al layers (< 1.3 nm). The resistance and magnetoresistance of the tunnel junctions is evaluated for different Al thickness and different oxidation times, showing tunnel magnetoresistance values of 20% for 1 kΩ.μm2. The voltage bias and temperature dependence of the transport properties is addressed, as well as the influence of thermal post-treatment.

Keywords

Tunnel Junction Bottom Electrode Oxidation Time Tunnel Barrier Magnetic Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Moodera, J. Nassar, and J. Mathon, Annu. Rev. Mater. Sci. 29 (1999) 381.CrossRefGoogle Scholar
  2. 2.
    H. Boeve, C. Bruynseraede, J. Das, K. Dessein, G. Borghs, J. De Boeck, R.C. Sousa, L.V. Melo, and P.P. Freitas, IEEE Trans. Magn. 35 (1999) 2820.CrossRefGoogle Scholar
  3. 3.
    K.-M.H. Lenssen, A.E.M. De Veirman, and J.J.T.M. Donkers, J. Appl. Phys. 81 (1997) 4915.CrossRefGoogle Scholar
  4. 4.
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice. B.B. Beyers, R.E. Scheuerlein, E.J. O’S ullivan, S.L. Brown, J. Bucchigano D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher, J. Appl. Phys. 85 (1999) 5828.CrossRefGoogle Scholar
  5. 5.
    R.J.M. van de Veerdonk, J. Nowak, R. Meservey, J.S. Moodera, and W.J.M. de Jonge, Appl. Phys. Lett. 71 (1997)2839.CrossRefGoogle Scholar
  6. 6.
    J.S. Moodera, J. Novak, and R.J.M. van de Veerdonk, Phys. Rev. Lett. 80 (1998) 2941.CrossRefGoogle Scholar
  7. 7.
    N. Cabrera, and N.F. Mott, Rep. Progr. Phys. 12 (1948) 163.CrossRefGoogle Scholar
  8. 8.
    J.G. Simmons, J. Appl. Phys. 34 (1963) 1793.CrossRefGoogle Scholar
  9. 9.
    H. Boeve, J. De Boeck, and G. Borghs, submitted to J. Appl. Phys.Google Scholar
  10. 10.
    W.F. Brinkman, R.C. Dynes, and J.M. Rowell, J. Appl. Phys. 41 (1970) 192.CrossRefGoogle Scholar
  11. 11.
    L. Néel, Comptes Rendus, 255 (1962) 1676.Google Scholar
  12. 12.
    J.C.S. Kools, IEEE Trans. Magn. 32 (1996) 3165.CrossRefGoogle Scholar
  13. 13.
    R. Jansen, and J. S. Moodera, Phys. Rev. B 61 (2000) 9047.CrossRefGoogle Scholar
  14. 14.
    . M. Jullière, Phys. Lett. 54A (1975) 225.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • H. Boeve
    • 1
  • J. De Boeck
    • 1
  • G. Borghs
    • 1
  1. 1.IMEC v.z.w.LeuvenBelgium

Personalised recommendations