Thermal Stability in Magnetic and Magneto-Optical Recording Media

  • T. Suzuki
  • R. Sbiaa
  • M. Birukawa
  • Y. Itoh
  • G. Lauhoff
  • M. Mochida
Part of the NATO Science Series book series (NAII, volume 41)


First, a brief review of thermal decay of magnetization is given. Discussions on activation volume are presented in detail for longitudinal recording media. It is noted that the activation volume estimated based on waiting time methods is found to decrease with increasing reversing field for all the media under consideration. This result suggests that an activation volume in a written bit changes from place to place, depending upon on stray field due to a bit-transition. The recording noise is closely related to activation volume as well. Thermal stability of amorphous TbFeCo mono-layers and {TbFeCo/Pt} multilayers is studied by magnetic viscosity measurements M(t). Using, isothermal remanence measurements the relationship between the magnetization reversal process and its time dependence is investigated. The non-linear evolution of magnetization with In(time) takes place when the mechanism responsible for magnetization reversal process is mainly domain nucleation. On the other hand domain wall motion process induces a linear M(t) behavior. For multilayers with very small Pt thickness (samples with high square hysteresis loop), magnetization time decay can be described by a single energy barrier E B model. As Pt thickness increases, the distribution of E B becomes wider leading to almost linear magnetization decay with In(time) as in longitudinal recording media. Finally, the life time of written domains is discussed in terms of domain size. It is concluded that the difference between a pinning field and wall-field is a decisive factor for governing a life time.


Activation Volume Magnetic Anisotropy Fluctuation Field Demagnetization Field Magnetization Reversal Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Street, R. and Wooley, J.C. (1949) Proc. Phys. Soc London, Sect. A62, 562.CrossRefGoogle Scholar
  2. 2.
    Néel, L (1949) Ann. Geophys. 5, 99.Google Scholar
  3. 3.
    Sharrock, M.P. and McKinney, J.T (1981), IEEE Trans. MAG.-17, 3020–3022Google Scholar
  4. 4.
    Sharrock, M.P. (1984). IEEE Trans. MAG.-20, 754–756Google Scholar
  5. 5.
    Meichle, L.S. and Victora, R.H. (1992) IEEE Trans. MAG-28, 3393–3397.Google Scholar
  6. 6.
    Lu, P and Charrap, S.U. (1994). IEEE Trans. MAG-30, 4230.Google Scholar
  7. 7.
    Lottis, D.K., Dahlberg, ED., Christner, JA., Lee, J.I., Peterson, R.L. and White, RM. (1990) J. Appl. Phys. 63, 2920.CrossRefGoogle Scholar
  8. 8.
    Uesaka, Y., Nakatani, Y., Tanahashi, K., Tamai, I., Matsunuma, S. and Y. Tanahashi (1998) IEEE Trans.-MAG.-34, 1528.Google Scholar
  9. 9.
    Abana, ER, Glijer, P., Kisker, H., Okamoto, I. and Suzuki, T. (1997) J. Magn. Magn. Mat., 175, 148.CrossRefGoogle Scholar
  10. 10.
    Moser, A.and Weller, D., (1999) IEEE Trans.MAG. 35, 2808–2813.CrossRefGoogle Scholar
  11. 11.
    Hosoe, Y., Tamaki, I., Yamamoto, T., Manbe, T. and Yjima, Y. (1997) IEEE Trans. MAG-33, 3028–3030.Google Scholar
  12. 12.
    Uwazumi, H., Chen, J. and Judy, J.H. (1997) IEEE Trans. MAG-33, 3031–3033.Google Scholar
  13. 13.
    Harte, K.J. (1964) Spin-wave effects in the magnetization reversal of a thin ferromagnetic film, MIT Lincoln Lab. Technical Report #364.Google Scholar
  14. 14.
    Ishio, S. and Saito, J. (1998) SRC report.Google Scholar
  15. 15.
    Amett, P., Minvielle, T. and Nair, S. Presented at the 7th MRM meeting (Mastricht, The Netherlands, 1998).Google Scholar
  16. 16.
    Suzuki, T. Presented at 43rd M3(# DA-12, Miami, 1998).Google Scholar
  17. 17.
    Hoffmann, H. (1964) Phys. Stat. Sol. 5, 187.CrossRefGoogle Scholar
  18. 18.
    Crew, DC, Farrant, S.H., McCormick, P.G. and Street, R. J. (1996) Mag.Magn.Mat. 163, 299CrossRefGoogle Scholar
  19. 19.
    Wohlfarth, E.P. (1984) J. Phys. F:Met.Phys., L155–159, 14.CrossRefGoogle Scholar
  20. 20.
    Gaunt, P. (1986) J. Appl. Phys. 59, 4129–4132.CrossRefGoogle Scholar
  21. 21.
    Gaunt, P. (1977) J. Appl. Phys. 48, 3470.CrossRefGoogle Scholar
  22. 22.
    Néel, L. (1950) J. Physique Radium 11, 49; (1951) J. Physique Radium 12, 339.CrossRefGoogle Scholar
  23. 23.
    Bayreuther, G., Bruno, P., Lugert, G. and Turtur, C. (1989) Phys. Rev. B40, 7399.Google Scholar
  24. 24.
    Brown, S.D, Street, R., Chantrell, R., Hycock, P.W. and O’Grady, K. (1996) J. Appl. Phys. 79, 2594.CrossRefGoogle Scholar
  25. 25.
    Lyberatos, A. and Chantrell, R.W. (1997) J. Phys. Condens. Matter. 9, 2623–2643CrossRefGoogle Scholar
  26. 26.
    Oseroff, S.B., Franks, D., Tobin, V.M. and Schultz, S. (1987) IEEE Trans. MAG-23, 2871.Google Scholar
  27. 27.
    Scharrock, M.P. (1994) J. Appl. Phys. 76, 6413.CrossRefGoogle Scholar
  28. 28.
    Bruno, P., Bayreuther, G., Beauvillian, P., Chappert, C, Lugert, G., Renard, D., Renard, J.P. and Sciden, J. (1990) J. Appl. Phys. 68(11) 5759–5766.CrossRefGoogle Scholar
  29. 29.
    Suzuki, T. (1995) Scripta Mat. 33, 1609–1623; (1995) IEEE TransMAG-31, 4085.CrossRefGoogle Scholar
  30. 30.
    Kronmuller, H., Durst, K.-D. and Sagaa, M. (1988) J.Mag.Mag.Mat. 74,291–302.CrossRefGoogle Scholar
  31. 31.
    El Hilo, M., O’Grady, K, Pfeiffer, H., Chantrell, R.W. and Veitch, R.J. (1998) IEEE Trans. MAG-28, 2689.Google Scholar
  32. 32.
    Acharya, B.R, Suzuki, T. and Takano, K. (1999) IEEE TransMAG. 35, 2652–2654.Google Scholar
  33. 33.
    Sharrock, M.P and McKinney, J.T. (1997) IEEE Trans. MAG-33, 978–983.Google Scholar
  34. 34.
    Weiler, D. and Moose, M. Private communication. NS1C data for various samples to determine KV/kT.Google Scholar
  35. 35.
    Abarra, E.N., Phillips, G.N., Okamoto, I. and Suzuki, T. (1997) J. Magn. Soc. Jpn. 21, NoS-2, 291–296.CrossRefGoogle Scholar
  36. 36.
    Zhang, Y. and Bertram, H.N. (1998) IEEE Trans. MAG.-34, No.5, 3786–3793.Google Scholar
  37. 37.
    Yamanaka, K., Yamamoto, T., Tanahashi, K., Inba, N, Hosoe, Y., Uesaka, Y. and Futamoto, M. (1886) J. Mag. Mag. Mat. 152, 411–416.CrossRefGoogle Scholar
  38. 38.
    Chantrell, R.W., Hannary, J.D., Coverdale, G.N., Roberts, G.W. and Lyberatos, A. (1999) J. Magn. Soc. Japan 23, Noll, 2058–2063.Google Scholar
  39. 39.
    Lauhoff, G., Suzuki, T. and Acharya, R. (2000) J. Appl. Phys., 87(9), 5702–5704.CrossRefGoogle Scholar
  40. 40.
    William, L. and Comstock, R.L. (1976) A.I.P.Conf. Proc., 5, 738Google Scholar
  41. 41.
    Maller, V.A. and Biddleton, B.K. (1974) Radio Electron. Eng., 44, 281CrossRefGoogle Scholar
  42. 42.
    Lauhoff, G, Mochida, M.and Suzuki, T. (1999) Presented at the Annual Meeting of the Magnetics Society of Japan.Google Scholar
  43. 43.
    Choe, S.-B. and Shin, S.-C (1998) Phys. Rev. B, 57, 1085.CrossRefGoogle Scholar
  44. 44.
    Chen, X. and Kryder, M.H. (1999) J.Appl. Phys., 85, 5006.CrossRefGoogle Scholar
  45. 45.
    Thomson, T. and O’Grady, K. (1997) J.Phys. D: Appl. Phys., 30, 1566.CrossRefGoogle Scholar
  46. 46.
    Huth, B.G. (1974) IBM J. Res. Developm., 18, 100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • T. Suzuki
    • 1
  • R. Sbiaa
    • 1
  • M. Birukawa
    • 1
  • Y. Itoh
    • 1
  • G. Lauhoff
    • 1
  • M. Mochida
    • 1
  1. 1.Information Storage Materials LaboratoryToyota Technological InstituteNagoyaJapan

Personalised recommendations