Advertisement

A Note on Wavemap-Tensor Cosmologies

  • Spiros Cotsakis
  • John Miritzis
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 276)

Abstract

We examine theories of gravity which include finitely many coupled scalar fields with arbitrary couplings to the curvature (wavemaps). We show that the most general scalar-tensor σ-model action is conformally equivalent to general relativity with a minimally coupled wavemap with a particular target metric. Inflation on the source manifold is then shown to occur in a novel way due to the combined effect of arbitrary curvature couplings and wavemap self-interactions. A new interpretation of the conformal equivalence theorem proved for such ‘wavemaptensor’ theories through brane-bulk dynamics is also discussed.

Keywords

Einstein-wavemap system inflationary cosmologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kolb, E.W., and M.S. Turner, The Early Universe, (Addison Wesley, 1990).Google Scholar
  2. [2]
    Linde, A., Particle Physics and Inflationary Cosmology, (Harwood, 1990).Google Scholar
  3. [3]
    Gasperini, M., and G. Veneziano, Mod.Phys.Lett. A8, 3701 (1993); M. Gasperini, and G. Veneziano, Phys.Rev. D50, 2519 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    Gasperini, M., Class.Quant.Grav 17, R1 (2000).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    Barrow, J.D., and S. Cotsakis, Phys.Lett. B214, 515 (1988).MathSciNetGoogle Scholar
  6. [6]
    Barrow, J.D, Phys.Rev D48, 3592 (1993).MathSciNetADSGoogle Scholar
  7. [7]
    Brans, C., and R.H. Dicke, Phys.Rev. 124,925 (1961).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    Damour T., and G. Esposito-Farèse, Class. Quant. Grav. 9,2093 (1992).ADSMATHCrossRefGoogle Scholar
  9. [9]
    Callan, C.G., et al., Nucl.Phys. B262, 597 (1985).MathSciNetADSGoogle Scholar
  10. [10]
    Page, D.N., J.Math.Phys. 32, 3427 (1991).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Choquet-Bruhat Y., in, Mathematical and Quantum Aspects in Relativity and Cosmology, S. Cotsakis and G.W. Gibbons (eds.) (Springer, 1999).Google Scholar
  12. [12]
    Shatah J. and M. Struwe, Geometric Wave Equations, Courant Lecture Notes in Mathematics #2, 1998.Google Scholar
  13. [13]
    Carter, B., Essentials of classical brane dynamics, gr-qc/0012036.Google Scholar
  14. [14]
    Barrowr J.D., Phys.Rev. D 47, 5329 (1993).MathSciNetADSGoogle Scholar
  15. [15]
    Steinhardt P.J. and F.S. Accetta, Phys.Rev.Lett. 64, 2740 (1990).ADSCrossRefGoogle Scholar
  16. [16]
    Schouten J.A., Ricci Calculus, (Springer, Berlin, 1954).Google Scholar
  17. [17]
    Damour T. and K. Nordtvedt, Phys. Rev. D 48, 3436 (1993).MathSciNetADSGoogle Scholar
  18. [18]
    Vilenkin A., Cosmological constant problems and their solutions, hep-th/0106083.Google Scholar
  19. [19]
    Randall, L., and R. Sundrum, Phys.Rev.Lett 83, 4690 (1999).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Spiros Cotsakis
    • 1
  • John Miritzis
    • 2
  1. 1.GEODYSYC, Department of MathematicsUniversity of the AegeanKarlovassiGreece
  2. 2.Department of Marine SciencesUniversity of the AegeanMytileneGreece

Personalised recommendations